These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

409 related articles for article (PubMed ID: 36685715)

  • 1. SynthEye: Investigating the Impact of Synthetic Data on Artificial Intelligence-assisted Gene Diagnosis of Inherited Retinal Disease.
    Veturi YA; Woof W; Lazebnik T; Moghul I; Woodward-Court P; Wagner SK; Cabral de Guimarães TA; Daich Varela M; Liefers B; Patel PJ; Beck S; Webster AR; Mahroo O; Keane PA; Michaelides M; Balaskas K; Pontikos N
    Ophthalmol Sci; 2023 Jun; 3(2):100258. PubMed ID: 36685715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic Medical Images for Robust, Privacy-Preserving Training of Artificial Intelligence: Application to Retinopathy of Prematurity Diagnosis.
    Coyner AS; Chen JS; Chang K; Singh P; Ostmo S; Chan RVP; Chiang MF; Kalpathy-Cramer J; Campbell JP;
    Ophthalmol Sci; 2022 Jun; 2(2):100126. PubMed ID: 36249693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of Deep Generative Models for High-Resolution Synthetic Retinal Image Generation of Age-Related Macular Degeneration.
    Burlina PM; Joshi N; Pacheco KD; Liu TYA; Bressler NM
    JAMA Ophthalmol; 2019 Mar; 137(3):258-264. PubMed ID: 30629091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deepfakes in Ophthalmology: Applications and Realism of Synthetic Retinal Images from Generative Adversarial Networks.
    Chen JS; Coyner AS; Chan RVP; Hartnett ME; Moshfeghi DM; Owen LA; Kalpathy-Cramer J; Chiang MF; Campbell JP
    Ophthalmol Sci; 2021 Dec; 1(4):100079. PubMed ID: 36246951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of Generative Adversarial Networks Model for Synthetic Optical Coherence Tomography Images of Retinal Disorders.
    Zheng C; Xie X; Zhou K; Chen B; Chen J; Ye H; Li W; Qiao T; Gao S; Yang J; Liu J
    Transl Vis Sci Technol; 2020 May; 9(2):29. PubMed ID: 32832202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Learning-Based Classification of Inherited Retinal Diseases Using Fundus Autofluorescence.
    Miere A; Le Meur T; Bitton K; Pallone C; Semoun O; Capuano V; Colantuono D; Taibouni K; Chenoune Y; Astroz P; Berlemont S; Petit E; Souied E
    J Clin Med; 2020 Oct; 9(10):. PubMed ID: 33066661
    [No Abstract]   [Full Text] [Related]  

  • 7. Synthetic artificial intelligence using generative adversarial network for retinal imaging in detection of age-related macular degeneration.
    Wang Z; Lim G; Ng WY; Tan TE; Lim J; Lim SH; Foo V; Lim J; Sinisterra LG; Zheng F; Liu N; Tan GSW; Cheng CY; Cheung GCM; Wong TY; Ting DSW
    Front Med (Lausanne); 2023; 10():1184892. PubMed ID: 37425325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Comparative Analysis of the Novel Conditional Deep Convolutional Neural Network Model, Using Conditional Deep Convolutional Generative Adversarial Network-Generated Synthetic and Augmented Brain Tumor Datasets for Image Classification.
    Onakpojeruo EP; Mustapha MT; Ozsahin DU; Ozsahin I
    Brain Sci; 2024 May; 14(6):. PubMed ID: 38928561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning for the Diagnosis of Stage in Retinopathy of Prematurity: Accuracy and Generalizability across Populations and Cameras.
    Chen JS; Coyner AS; Ostmo S; Sonmez K; Bajimaya S; Pradhan E; Valikodath N; Cole ED; Al-Khaled T; Chan RVP; Singh P; Kalpathy-Cramer J; Chiang MF; Campbell JP
    Ophthalmol Retina; 2021 Oct; 5(10):1027-1035. PubMed ID: 33561545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of Generative Adversarial Networks for Synthetic Anterior Segment Optical Coherence Tomography Images in Closed-Angle Detection.
    Zheng C; Bian F; Li L; Xie X; Liu H; Liang J; Chen X; Wang Z; Qiao T; Yang J; Zhang M
    Transl Vis Sci Technol; 2021 Apr; 10(4):34. PubMed ID: 34004012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generative adversarial network based synthetic data training model for lightweight convolutional neural networks.
    Rather IH; Kumar S
    Multimed Tools Appl; 2023 May; ():1-23. PubMed ID: 37362646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A deep learning model for generating fundus autofluorescence images from color fundus photography.
    Song F; Zhang W; Zheng Y; Shi D; He M
    Adv Ophthalmol Pract Res; 2023; 3(4):192-198. PubMed ID: 38059165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A medical image classification method based on self-regularized adversarial learning.
    Fan Z; Zhang X; Ruan S; Thorstad W; Gay H; Song P; Wang X; Li H
    Med Phys; 2024 Nov; 51(11):8232-8246. PubMed ID: 39078069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of Generative Adversarial Networks for High-Resolution Synthetic Image Generation of Circumpapillary Optical Coherence Tomography Images for Glaucoma.
    Sreejith Kumar AJ; Chong RS; Crowston JG; Chua J; Bujor I; Husain R; Vithana EN; Girard MJA; Ting DSW; Cheng CY; Aung T; Popa-Cherecheanu A; Schmetterer L; Wong D
    JAMA Ophthalmol; 2022 Oct; 140(10):974-981. PubMed ID: 36048435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can artificial intelligence accelerate the diagnosis of inherited retinal diseases? Protocol for a data-only retrospective cohort study (Eye2Gene).
    Nguyen Q; Woof W; Kabiri N; Sen S; Daich Varela M; Cabral De Guimaraes TA; Shah M; Sumodhee D; Moghul I; Al-Khuzaei S; Liu Y; Hollyhead C; Tailor B; Lobo L; Veal C; Archer S; Furman J; Arno G; Gomes M; Fujinami K; Madhusudhan S; Mahroo OA; Webster AR; Balaskas K; Downes SM; Michaelides M; Pontikos N;
    BMJ Open; 2023 Mar; 13(3):e071043. PubMed ID: 36940949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning detects genetic alterations in cancer histology generated by adversarial networks.
    Krause J; Grabsch HI; Kloor M; Jendrusch M; Echle A; Buelow RD; Boor P; Luedde T; Brinker TJ; Trautwein C; Pearson AT; Quirke P; Jenniskens J; Offermans K; van den Brandt PA; Kather JN
    J Pathol; 2021 May; 254(1):70-79. PubMed ID: 33565124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AI vs. AI: Can AI Detect AI-Generated Images?
    Baraheem SS; Nguyen TV
    J Imaging; 2023 Sep; 9(10):. PubMed ID: 37888306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic Genitourinary Image Synthesis via Generative Adversarial Networks: Enhancing Artificial Intelligence Diagnostic Precision.
    Van Booven DJ; Chen CB; Malpani S; Mirzabeigi Y; Mohammadi M; Wang Y; Kryvenko ON; Punnen S; Arora H
    J Pers Med; 2024 Jun; 14(7):. PubMed ID: 39063957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning-based classification of retinal atrophy using fundus autofluorescence imaging.
    Miere A; Capuano V; Kessler A; Zambrowski O; Jung C; Colantuono D; Pallone C; Semoun O; Petit E; Souied E
    Comput Biol Med; 2021 Mar; 130():104198. PubMed ID: 33383315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combating COVID-19 Using Generative Adversarial Networks and Artificial Intelligence for Medical Images: Scoping Review.
    Ali H; Shah Z
    JMIR Med Inform; 2022 Jun; 10(6):e37365. PubMed ID: 35709336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.