These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 36685784)
1. Modifying surface charge density of thermoplastic nanofluidic biosensors by multivalent cations within the slip plane of the electric double layer. Jia Z; Choi J; Lee S; Soper SA; Park S Colloids Surf A Physicochem Eng Asp; 2022 Sep; 648():. PubMed ID: 36685784 [TBL] [Abstract][Full Text] [Related]
2. Electrokinetic identification of ribonucleotide monophosphates (rNMPs) using thermoplastic nanochannels. Amarasekara CA; Rathnayaka C; Athapattu US; Zhang L; Choi J; Park S; Nagel AC; Soper SA J Chromatogr A; 2021 Feb; 1638():461892. PubMed ID: 33477027 [TBL] [Abstract][Full Text] [Related]
3. Surface charge, electroosmotic flow and DNA extension in chemically modified thermoplastic nanoslits and nanochannels. Uba FI; Pullagurla SR; Sirasunthorn N; Wu J; Park S; Chantiwas R; Cho YK; Shin H; Soper SA Analyst; 2015 Jan; 140(1):113-26. PubMed ID: 25369728 [TBL] [Abstract][Full Text] [Related]
4. Surface Charge Density-Dependent DNA Capture through Polymer Planar Nanopores. Jia Z; Choi J; Park S ACS Appl Mater Interfaces; 2018 Nov; 10(47):40927-40937. PubMed ID: 30371050 [TBL] [Abstract][Full Text] [Related]
5. Nanofluidic Charge Transport under Strong Electrostatic Coupling Conditions. Buyukdagli S J Phys Chem B; 2020 Dec; 124(49):11299-11309. PubMed ID: 33231451 [TBL] [Abstract][Full Text] [Related]
6. Ion Concentration-Dependent Surface Charge Density Inside a Nanopore. Zhan L; Zhang Z; Zheng F; Liu W; Zhang Y; Sha J; Chen Y J Phys Chem Lett; 2023 Dec; 14(50):11536-11542. PubMed ID: 38095320 [TBL] [Abstract][Full Text] [Related]
7. Detection and identification of single ribonucleotide monophosphates using a dual in-plane nanopore sensor made in a thermoplastic Rathnayaka C; Chandrosoma IA; Choi J; Childers K; Chibuike M; Akabirov K; Shiri F; Hall AR; Lee M; McKinney C; Verber M; Park S; Soper SA Lab Chip; 2024 May; 24(10):2721-2735. PubMed ID: 38656267 [TBL] [Abstract][Full Text] [Related]
8. Ion correlations in nanofluidic channels: effects of ion size, valence, and concentration on voltage- and pressure-driven currents. Hoffmann J; Gillespie D Langmuir; 2013 Jan; 29(4):1303-17. PubMed ID: 23286510 [TBL] [Abstract][Full Text] [Related]
9. A Simulation Analysis of Nanofluidic Ion Current Rectification Using a Metal-Dielectric Janus Nanopore Driven by Induced-Charge Electrokinetic Phenomena. Liu W; Sun Y; Yan H; Ren Y; Song C; Wu Q Micromachines (Basel); 2020 May; 11(6):. PubMed ID: 32471139 [TBL] [Abstract][Full Text] [Related]
10. Tailoring Thermoplastic In-Plane Nanopore Size by Thermal Fusion Bonding for the Analysis of Single Molecules. Athapattu US; Rathnayaka C; Vaidyanathan S; Gamage SST; Choi J; Riahipour R; Manoharan A; Hall AR; Park S; Soper SA ACS Sens; 2021 Aug; 6(8):3133-3143. PubMed ID: 34406743 [TBL] [Abstract][Full Text] [Related]
14. Quantification of surface charge density and its effect on boundary slip. Jing D; Bhushan B Langmuir; 2013 Jun; 29(23):6953-63. PubMed ID: 23683055 [TBL] [Abstract][Full Text] [Related]
15. Influence of Lanthanum on Stern Layer Conductance in the Nanochannel. Giraud M; Delapierre FD; Ngom SM; Le Potier I; Pallandre A; Haghiri-Gosnet AM; Gamby J J Phys Chem A; 2023 Aug; 127(33):7012-7022. PubMed ID: 37566888 [TBL] [Abstract][Full Text] [Related]
16. Effect of boundary slip and surface charge on the pressure-driven flow. Jing D; Bhushan B J Colloid Interface Sci; 2013 Feb; 392():15-26. PubMed ID: 23137902 [TBL] [Abstract][Full Text] [Related]
17. Effect of charge inversion on nanoconfined flow of multivalent ionic solutions. Rojano A; Córdoba A; Walther JH; Zambrano HA Phys Chem Chem Phys; 2022 Feb; 24(8):4935-4943. PubMed ID: 35138314 [TBL] [Abstract][Full Text] [Related]
18. Efficiently accounting for ion correlations in electrokinetic nanofluidic devices using density functional theory. Gillespie D; Khair AS; Bardhan JP; Pennathur S J Colloid Interface Sci; 2011 Jul; 359(2):520-9. PubMed ID: 21531429 [TBL] [Abstract][Full Text] [Related]
19. Electrical conductance of conical nanopores: Symmetric and asymmetric salts and their mixtures. Ramirez P; Cervera J; Manzanares JA; Nasir S; Ali M; Ensinger W; Mafe S J Chem Phys; 2022 Oct; 157(14):144702. PubMed ID: 36243538 [TBL] [Abstract][Full Text] [Related]
20. Asymmetric ion transport through ion-channel-mimetic solid-state nanopores. Guo W; Tian Y; Jiang L Acc Chem Res; 2013 Dec; 46(12):2834-46. PubMed ID: 23713693 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]