BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 36685926)

  • 1. A machine learning-based approach to ERα bioactivity and drug ADMET prediction.
    An T; Chen Y; Chen Y; Ma L; Wang J; Zhao J
    Front Genet; 2022; 13():1087273. PubMed ID: 36685926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction and Screening Model for Products Based on Fusion Regression and XGBoost Classification.
    Wu J; Kong L; Yi M; Chen Q; Cheng Z; Zuo H; Yang Y
    Comput Intell Neurosci; 2022; 2022():4987639. PubMed ID: 35958779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization Modeling of Anti - breast Cancer Candidate Drugs.
    Zhou S; Li Y; Zhang X
    Biotechnol Genet Eng Rev; 2023 Mar; ():1-19. PubMed ID: 36960749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MLP-Based Regression Prediction Model For Compound Bioactivity.
    Qin Y; Li C; Shi X; Wang W
    Front Bioeng Biotechnol; 2022; 10():946329. PubMed ID: 35910022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal modeling of anti-breast cancer candidate drugs screening based on multi-model ensemble learning with imbalanced data.
    Zhou J; Li X; Ma Y; Wu Z; Xie Z; Zhang Y; Wei Y
    Math Biosci Eng; 2023 Jan; 20(3):5117-5134. PubMed ID: 36896538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of in Silico Models for Predicting P-Glycoprotein Inhibitors Based on a Two-Step Approach for Feature Selection and Its Application to Chinese Herbal Medicine Screening.
    Yang M; Chen J; Shi X; Xu L; Xi Z; You L; An R; Wang X
    Mol Pharm; 2015 Oct; 12(10):3691-713. PubMed ID: 26376206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal Modeling of Anti-Breast Cancer Candidate Drugs Based on Graph Model Feature Selection.
    Chen R; He Z; Huang S; Shen L; Zhou X
    Comput Math Methods Med; 2022; 2022():8418048. PubMed ID: 36081436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel QSAR Approach for a Regression Model of Clearance That Combines DeepSnap-Deep Learning and Conventional Machine Learning.
    Mamada H; Nomura Y; Uesawa Y
    ACS Omega; 2022 May; 7(20):17055-17062. PubMed ID: 35647436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of ADMET Properties of Anti-Breast Cancer Compounds Using Three Machine Learning Algorithms.
    Li X; Tang L; Li Z; Qiu D; Yang Z; Li B
    Molecules; 2023 Mar; 28(5):. PubMed ID: 36903569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine Learning for In Silico ADMET Prediction.
    Jia L; Gao H
    Methods Mol Biol; 2022; 2390():447-460. PubMed ID: 34731482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ChemBioSim: Enhancing Conformal Prediction of In Vivo Toxicity by Use of Predicted Bioactivities.
    Garcia de Lomana M; Morger A; Norinder U; Buesen R; Landsiedel R; Volkamer A; Kirchmair J; Mathea M
    J Chem Inf Model; 2021 Jul; 61(7):3255-3272. PubMed ID: 34153183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An integrated scheme for feature selection and parameter setting in the support vector machine modeling and its application to the prediction of pharmacokinetic properties of drugs.
    Yang SY; Huang Q; Li LL; Ma CY; Zhang H; Bai R; Teng QZ; Xiang ML; Wei YQ
    Artif Intell Med; 2009 Jun; 46(2):155-63. PubMed ID: 18701266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FP-ADMET: a compendium of fingerprint-based ADMET prediction models.
    Venkatraman V
    J Cheminform; 2021 Sep; 13(1):75. PubMed ID: 34583740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A consensual machine-learning-assisted QSAR model for effective bioactivity prediction of xanthine oxidase inhibitors using molecular fingerprints.
    Wu Y; Li M; Shen J; Pu X; Guo Y
    Mol Divers; 2023 Apr; ():. PubMed ID: 37043162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ADMETboost: a web server for accurate ADMET prediction.
    Tian H; Ketkar R; Tao P
    J Mol Model; 2022 Dec; 28(12):408. PubMed ID: 36454321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction Model of Clearance by a Novel Quantitative Structure-Activity Relationship Approach, Combination DeepSnap-Deep Learning and Conventional Machine Learning.
    Mamada H; Nomura Y; Uesawa Y
    ACS Omega; 2021 Sep; 6(36):23570-23577. PubMed ID: 34549154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QSAR-QSIIR-based prediction of bioconcentration factor using machine learning and preliminary application.
    Xu JY; Wang K; Men SH; Yang Y; Zhou Q; Yan ZG
    Environ Int; 2023 Jul; 177():108003. PubMed ID: 37276762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining handcrafted features with latent variables in machine learning for prediction of radiation-induced lung damage.
    Cui S; Luo Y; Tseng HH; Ten Haken RK; El Naqa I
    Med Phys; 2019 May; 46(5):2497-2511. PubMed ID: 30891794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ADMET property prediction via multi-task graph learning under adaptive auxiliary task selection.
    Du BX; Xu Y; Yiu SM; Yu H; Shi JY
    iScience; 2023 Nov; 26(11):108285. PubMed ID: 38026198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interpretability and Class Imbalance in Prediction Models for Pain Volatility in Manage My Pain App Users: Analysis Using Feature Selection and Majority Voting Methods.
    Rahman QA; Janmohamed T; Clarke H; Ritvo P; Heffernan J; Katz J
    JMIR Med Inform; 2019 Nov; 7(4):e15601. PubMed ID: 31746764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.