BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 36685926)

  • 21. Deep-PK: deep learning for small molecule pharmacokinetic and toxicity prediction.
    Myung Y; de Sá AGC; Ascher DB
    Nucleic Acids Res; 2024 Apr; ():. PubMed ID: 38634808
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Application of random forest based on semi-automatic parameter adjustment for optimization of anti-breast cancer drugs.
    Liu J; Zhou Z; Kong S; Ma Z
    Front Oncol; 2022; 12():956705. PubMed ID: 35936743
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ToxiM: A Toxicity Prediction Tool for Small Molecules Developed Using Machine Learning and Chemoinformatics Approaches.
    Sharma AK; Srivastava GN; Roy A; Sharma VK
    Front Pharmacol; 2017; 8():880. PubMed ID: 29249969
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pre-processing feature selection for improved C&RT models for oral absorption.
    Newby D; Freitas AA; Ghafourian T
    J Chem Inf Model; 2013 Oct; 53(10):2730-42. PubMed ID: 24050619
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Performance Evaluation of Regression Models for the Prediction of the COVID-19 Reproduction Rate.
    Kaliappan J; Srinivasan K; Mian Qaisar S; Sundararajan K; Chang CY; C S
    Front Public Health; 2021; 9():729795. PubMed ID: 34595149
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A big data approach with artificial neural network and molecular similarity for chemical data mining and endocrine disruption prediction.
    Paulose R; Jegatheesan K; Balakrishnan GS
    Indian J Pharmacol; 2018; 50(4):169-176. PubMed ID: 30505052
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A two-stage modeling approach for breast cancer survivability prediction.
    Sedighi-Maman Z; Mondello A
    Int J Med Inform; 2021 May; 149():104438. PubMed ID: 33730681
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting Organ Toxicity Using in Vitro Bioactivity Data and Chemical Structure.
    Liu J; Patlewicz G; Williams AJ; Thomas RS; Shah I
    Chem Res Toxicol; 2017 Nov; 30(11):2046-2059. PubMed ID: 28768096
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Consultation length and no-show prediction for improving appointment scheduling efficiency at a cardiology clinic: A data analytics approach.
    Srinivas S; Salah H
    Int J Med Inform; 2021 Jan; 145():104290. PubMed ID: 33099184
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of Cross-Combinations of Feature Selection and Machine-Learning Classification Methods Based on [
    Gómez OV; Herraiz JL; Udías JM; Haug A; Papp L; Cioni D; Neri E
    Cancers (Basel); 2022 Jun; 14(12):. PubMed ID: 35740588
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computer-aided drug design and virtual screening of targeted combinatorial libraries of mixed-ligand transition metal complexes of 2-butanone thiosemicarbazone.
    Khan T; Ahmad R; Azad I; Raza S; Joshi S; Khan AR
    Comput Biol Chem; 2018 Aug; 75():178-195. PubMed ID: 29883916
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Construction of An Oral Bioavailability Prediction Model Based on Machine Learning for Evaluating Molecular Modifications.
    Yang Q; Fan L; Hao E; Hou X; Deng J; Xia Z; Du Z
    J Pharm Sci; 2024 May; 113(5):1155-1167. PubMed ID: 38430955
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Machine Learning-Based QSAR Model for Benzimidazole Derivatives as Corrosion Inhibitors by Incorporating Comprehensive Feature Selection.
    Liu Y; Guo Y; Wu W; Xiong Y; Sun C; Yuan L; Li M
    Interdiscip Sci; 2019 Dec; 11(4):738-747. PubMed ID: 31486019
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting Dose-Range Chemical Toxicity using Novel Hybrid Deep Machine-Learning Method.
    Limbu S; Zakka C; Dakshanamurthy S
    Toxics; 2022 Nov; 10(11):. PubMed ID: 36422913
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In silico prediction of major drug clearance pathways by support vector machines with feature-selected descriptors.
    Toshimoto K; Wakayama N; Kusama M; Maeda K; Sugiyama Y; Akiyama Y
    Drug Metab Dispos; 2014 Nov; 42(11):1811-9. PubMed ID: 25128502
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interpretable-ADMET: a web service for ADMET prediction and optimization based on deep neural representation.
    Wei Y; Li S; Li Z; Wan Z; Lin J
    Bioinformatics; 2022 May; 38(10):2863-2871. PubMed ID: 35561160
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Promises of Machine Learning Approaches in Prediction of Absorption of Compounds.
    Kumar R; Sharma A; Siddiqui MH; Tiwari RK
    Mini Rev Med Chem; 2018; 18(3):196-207. PubMed ID: 28302041
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Machine learning models in breast cancer survival prediction.
    Montazeri M; Montazeri M; Montazeri M; Beigzadeh A
    Technol Health Care; 2016; 24(1):31-42. PubMed ID: 26409558
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ADMET evaluation in drug discovery. 20. Prediction of breast cancer resistance protein inhibition through machine learning.
    Jiang D; Lei T; Wang Z; Shen C; Cao D; Hou T
    J Cheminform; 2020 Mar; 12(1):16. PubMed ID: 33430990
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automated classification of tropical shrub species: a hybrid of leaf shape and machine learning approach.
    Murat M; Chang SW; Abu A; Yap HJ; Yong KT
    PeerJ; 2017; 5():e3792. PubMed ID: 28924506
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.