These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 36686222)

  • 21. Recent Challenges and Trends of Polyhydroxyalkanoate Production by Extremophilic Bacteria Using Renewable Feedstocks.
    Możejko-Ciesielska J; Ray S; Sankhyan S
    Polymers (Basel); 2023 Nov; 15(22):. PubMed ID: 38006109
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A review on the potential of polyhydroxyalkanoates production from oil-based substrates.
    Chien Bong CP; Alam MNHZ; Samsudin SA; Jamaluddin J; Adrus N; Mohd Yusof AH; Muis ZA; Hashim H; Salleh MM; Abdullah AR; Chuprat BRB
    J Environ Manage; 2021 Nov; 298():113461. PubMed ID: 34435568
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Valorization of organic wastes using bioreactors for polyhydroxyalkanoate production: Recent advancement, sustainable approaches, challenges, and future perspectives.
    Goswami L; Kushwaha A; Napathorn SC; Kim BS
    Int J Biol Macromol; 2023 Aug; 247():125743. PubMed ID: 37423435
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Environmental evaluation of polyhydroxyalkanoates from animal slaughtering waste using Material Input Per Service Unit.
    Ali N; Rashid MI; Rehan M; Shah Eqani SAMA; Summan ASA; Ismail IMI; Koller M; Ali AM; Shahzad K
    N Biotechnol; 2023 Jul; 75():40-51. PubMed ID: 36948413
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Valorization of waste streams and C1 gases for sustainable food nutrients and value-added compounds production: Acetate as a promising intermediate.
    Gong G; Wu B; Liu L; Li J; Zhu Q; He M; Hu G
    Sci Total Environ; 2023 Oct; 893():164795. PubMed ID: 37321491
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of polyhydroxyalkanoates production from waste feedstocks and applications.
    Pakalapati H; Chang CK; Show PL; Arumugasamy SK; Lan JC
    J Biosci Bioeng; 2018 Sep; 126(3):282-292. PubMed ID: 29803402
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering Acetogenic Bacteria for Efficient One-Carbon Utilization.
    Lee H; Bae J; Jin S; Kang S; Cho BK
    Front Microbiol; 2022; 13():865168. PubMed ID: 35615514
    [TBL] [Abstract][Full Text] [Related]  

  • 28. What Is New in the Field of Industrial Wastes Conversion into Polyhydroxyalkanoates by Bacteria?
    Marciniak P; Możejko-Ciesielska J
    Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34073198
    [TBL] [Abstract][Full Text] [Related]  

  • 29. C1-carbon sources for chemical and fuel production by microbial gas fermentation.
    Dürre P; Eikmanns BJ
    Curr Opin Biotechnol; 2015 Dec; 35():63-72. PubMed ID: 25841103
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Polyhydroxyalkanoates synthesis by halophiles and thermophiles: towards sustainable production of microbial bioplastics.
    Obruča S; Dvořák P; Sedláček P; Koller M; Sedlář K; Pernicová I; Šafránek D
    Biotechnol Adv; 2022 Sep; 58():107906. PubMed ID: 35033587
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploring the potential of slaughterhouse waste valorization: Development and scale-up of a new bioprocess for medium-chain length polyhydroxyalkanoates production.
    Acedos MG; Moreno-Cid J; Verdú F; González JA; Tena S; López JC
    Chemosphere; 2022 Jan; 287(Pt 4):132401. PubMed ID: 34600930
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genetic and metabolic engineering challenges of C1-gas fermenting acetogenic chassis organisms.
    Bourgade B; Minton NP; Islam MA
    FEMS Microbiol Rev; 2021 Mar; 45(2):. PubMed ID: 33595667
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Developing Bioprospecting Strategies for Bioplastics Through the Large-Scale Mining of Microbial Genomes.
    Vuong P; Lim DJ; Murphy DV; Wise MJ; Whiteley AS; Kaur P
    Front Microbiol; 2021; 12():697309. PubMed ID: 34322108
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biopolymer poly-hydroxyalkanoates (PHA) production from apple industrial waste residues: A review.
    Liu H; Kumar V; Jia L; Sarsaiya S; Kumar D; Juneja A; Zhang Z; Sindhu R; Binod P; Bhatia SK; Awasthi MK
    Chemosphere; 2021 Dec; 284():131427. PubMed ID: 34323796
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PHA granule formation and degradation by Cupriavidus necator under different nutritional conditions.
    Nygaard D; Yashchuk O; Hermida ÉB
    J Basic Microbiol; 2021 Sep; 61(9):825-834. PubMed ID: 34342882
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Natural Polyhydroxyalkanoates-An Overview of Bacterial Production Methods.
    Fukala I; Kučera I
    Molecules; 2024 May; 29(10):. PubMed ID: 38792154
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The fundamental role of pH in CH4 bioconversion into polyhydroxybutyrate in mixed methanotrophic cultures.
    Pérez V; Lebrero R; Muñoz R; Pérez R
    Chemosphere; 2024 May; 355():141832. PubMed ID: 38570044
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel approach for productivity enhancement of polyhydroxyalkanoates (PHA) production by Cupriavidus necator DSM 545.
    Berezina N
    N Biotechnol; 2013 Jan; 30(2):192-5. PubMed ID: 22634022
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A review on production of polyhydroxyalkanoate (PHA) biopolyesters by thermophilic microbes using waste feedstocks.
    Chavan S; Yadav B; Tyagi RD; Drogui P
    Bioresour Technol; 2021 Dec; 341():125900. PubMed ID: 34523565
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Formation of polyhydroxyalkanoates using agro and industrial waste as a substrate - a review.
    Kanzariya R; Gautam A; Parikh S; Shah M; Gautam S
    Biotechnol Genet Eng Rev; 2023 Jan; ():1-40. PubMed ID: 36641590
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.