BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 36686480)

  • 1. A novel risk model based on the correlation between the expression of basement membrane genes and immune infiltration to predict the invasiveness of pituitary adenomas.
    Chen Z; Sun X; Kang Y; Zhang J; Jia F; Liu X; Zhu H
    Front Endocrinol (Lausanne); 2022; 13():1079777. PubMed ID: 36686480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Important Invasion-Related Genes in Non-functional Pituitary Adenomas.
    Joshi H; Vastrad B; Vastrad C
    J Mol Neurosci; 2019 Aug; 68(4):565-589. PubMed ID: 30982163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of biomarkers associated with the invasion of nonfunctional pituitary neuroendocrine tumors based on the immune microenvironment.
    Wu J; Guo J; Fang Q; Liu Y; Li C; Xie W; Zhang Y
    Front Endocrinol (Lausanne); 2023; 14():1131693. PubMed ID: 37522128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expressions of Matrix Metalloproteinases-9 and Tissue Inhibitor of Metalloproteinase-1 in Pituitary Adenomas and Their Relationships with Prognosis.
    Guo H; Sun Z; Wei J; Xiang Y; Qiu L; Guo L; Zhao W; Xu Z; Mao J
    Cancer Biother Radiopharm; 2019 Feb; 34(1):1-6. PubMed ID: 30676069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a subtype-specific ENC1 gene related to invasiveness in human pituitary null cell adenoma and oncocytomas.
    Feng J; Hong L; Wu Y; Li C; Wan H; Li G; Sun Y; Yu S; Chittiboina P; Montgomery B; Zhuang Z; Zhang Y
    J Neurooncol; 2014 Sep; 119(2):307-15. PubMed ID: 24916845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of Potential Biomarkers with Diagnostic Value in Pituitary Adenomas Using Prediction Analysis for Microarrays Method.
    Peng H; Deng Y; Wang L; Cheng Y; Xu Y; Liao J; Wu H
    J Mol Neurosci; 2019 Nov; 69(3):399-410. PubMed ID: 31280474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Progress of Immunotherapy in Refractory Pituitary Adenomas and Pituitary Carcinomas.
    Dai C; Liang S; Sun B; Kang J
    Front Endocrinol (Lausanne); 2020; 11():608422. PubMed ID: 33362722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of candidate target genes of pituitary adenomas based on the DNA microarray.
    Zhou W; Ma CX; Xing YZ; Yan ZY
    Mol Med Rep; 2016 Mar; 13(3):2182-6. PubMed ID: 26782791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Matrix metalloproteinase-9 and -2 and tissue inhibitor of matrix metalloproteinase-2 in invasive pituitary adenomas: A systematic review and meta-analysis of case-control trials.
    Liu HY; Gu WJ; Wang CZ; Ji XJ; Mu YM
    Medicine (Baltimore); 2016 Jun; 95(24):e3904. PubMed ID: 27310993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational analysis identifies invasion-associated genes in pituitary adenomas.
    Cao C; Wang W; Ma C; Jiang P
    Mol Med Rep; 2015 Aug; 12(2):1977-82. PubMed ID: 25824863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive analysis of the immunological landscape of pituitary adenomas: implications of immunotherapy for pituitary adenomas.
    Zhou W; Zhang C; Zhang D; Peng J; Ma S; Wang X; Guan X; Li P; Li D; Jia G; Jia W
    J Neurooncol; 2020 Sep; 149(3):473-487. PubMed ID: 33034841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of MMP14 in invasive pituitary adenomas: relationship to invasion and angiogenesis.
    Hui P; Xu X; Xu L; Hui G; Wu S; Lan Q
    Int J Clin Exp Pathol; 2015; 8(4):3556-67. PubMed ID: 26097538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusion-relaxation correlation spectrum imaging for predicting tumor consistency and gross total resection in patients with pituitary adenomas: a preliminary study.
    Su CQ; Wang BB; Tang WT; Tao C; Zhao P; Pan MH; Hong XN; Hu WT; Dai YM; Shi HB; Lu SS
    Eur Radiol; 2023 Oct; 33(10):6993-7002. PubMed ID: 37148353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Matrix metalloproteinase-9, a potential biological marker in invasive pituitary adenomas.
    Gong J; Zhao Y; Abdel-Fattah R; Amos S; Xiao A; Lopes MB; Hussaini IM; Laws ER
    Pituitary; 2008; 11(1):37-48. PubMed ID: 17768685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of potential and novel target genes in pituitary prolactinoma by bioinformatics analysis.
    Ghatnatti V; Vastrad B; Patil S; Vastrad C; Kotturshetti I
    AIMS Neurosci; 2021; 8(2):254-283. PubMed ID: 33709028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative proteomics identified a novel invasion biomarker associated with EMT in pituitary adenomas.
    Zhang Y; Li L; Ma X; Liu C; Liu G; Bie Z; Yang Z; Liu P
    Front Endocrinol (Lausanne); 2023; 14():1137648. PubMed ID: 36936141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. lncRNA-mRNA Expression Patterns in Invasive Pituitary Adenomas: A Microarray Analysis.
    Peng C; Wang S; Yu J; Deng X; Ye H; Chen Z; Yao H; Cai H; Li Y; Yuan Y
    Biomed Res Int; 2022; 2022():1380485. PubMed ID: 35572729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated bioinformatics-based identification of diagnostic markers in Alzheimer disease.
    Chen D; Zhang Y; Qiao R; Kong X; Zhong H; Wang X; Zhu J; Li B
    Front Aging Neurosci; 2022; 14():988143. PubMed ID: 36437991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EZH2 upregulation correlates with tumor invasiveness, proliferation, and angiogenesis in human pituitary adenomas.
    Liu B; Pang B; Wang Q; Yang S; Gao T; Ding Q; Liu H; Yang Y; Fan H; Zhang R; Xin T; Xu G; Pang Q
    Hum Pathol; 2017 Aug; 66():101-107. PubMed ID: 28666925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of biomarkers associated with diagnosis and prognosis of colorectal cancer patients based on integrated bioinformatics analysis.
    Chen L; Lu D; Sun K; Xu Y; Hu P; Li X; Xu F
    Gene; 2019 Apr; 692():119-125. PubMed ID: 30654001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.