These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

464 related articles for article (PubMed ID: 36686623)

  • 1. Improving Biocompatibility for Next Generation of Metallic Implants.
    Bandyopadhyay A; Mitra I; Goodman SB; Kumar M; Bose S
    Prog Mater Sci; 2023 Mar; 133():. PubMed ID: 36686623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advancements in Materials and Coatings for Biomedical Implants.
    Amirtharaj Mosas KK; Chandrasekar AR; Dasan A; Pakseresht A; Galusek D
    Gels; 2022 May; 8(5):. PubMed ID: 35621621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-material additive manufacturing technologies for Ti-, Mg-, and Fe-based biomaterials for bone substitution.
    Putra NE; Mirzaali MJ; Apachitei I; Zhou J; Zadpoor AA
    Acta Biomater; 2020 Jun; 109():1-20. PubMed ID: 32268239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Printing in alloy design to improve biocompatibility in metallic implants.
    Mitra I; Bose S; Dernell WS; Dasgupta N; Eckstrand C; Herrick J; Yaszemski MJ; Goodman SB; Bandyopadhyay A
    Mater Today (Kidlington); 2021 May; 45():20-34. PubMed ID: 34220288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in 3D printing of biodegradable metals for orthopaedic applications.
    Liang W; Zhou C; Zhang H; Bai J; Jiang B; Jiang C; Ming W; Zhang H; Long H; Huang X; Zhao J
    J Biol Eng; 2023 Aug; 17(1):56. PubMed ID: 37644461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: A state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility.
    Tan XP; Tan YJ; Chow CSL; Tor SB; Yeong WY
    Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():1328-1343. PubMed ID: 28482501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving the Tribological Properties and Biocompatibility of Zr-Based Bulk Metallic Glass for Potential Biomedical Applications.
    Sawyer V; Tao X; Dong H; Dashtbozorg B; Li X; Sammons R; Dong HS
    Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32331294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in bulk metallic glasses for biomedical applications.
    Li HF; Zheng YF
    Acta Biomater; 2016 May; 36():1-20. PubMed ID: 27045349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porous metal implants: processing, properties, and challenges.
    Bandyopadhyay A; Mitra I; Avila JD; Upadhyayula M; Bose S
    Int J Extrem Manuf; 2023 Sep; 5(3):032014. PubMed ID: 37476350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corrosion and surface modification on biocompatible metals: A review.
    Asri RIM; Harun WSW; Samykano M; Lah NAC; Ghani SAC; Tarlochan F; Raza MR
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():1261-1274. PubMed ID: 28532004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prospects and strategies for magnesium alloys as biodegradable implants from crystalline to bulk metallic glasses and composites-A review.
    Kiani F; Wen C; Li Y
    Acta Biomater; 2020 Feb; 103():1-23. PubMed ID: 31881312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Additively manufactured biodegradable porous iron.
    Li Y; Jahr H; Lietaert K; Pavanram P; Yilmaz A; Fockaert LI; Leeflang MA; Pouran B; Gonzalez-Garcia Y; Weinans H; Mol JMC; Zhou J; Zadpoor AA
    Acta Biomater; 2018 Sep; 77():380-393. PubMed ID: 29981948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional printing of metals for biomedical applications.
    Ni J; Ling H; Zhang S; Wang Z; Peng Z; Benyshek C; Zan R; Miri AK; Li Z; Zhang X; Lee J; Lee KJ; Kim HJ; Tebon P; Hoffman T; Dokmeci MR; Ashammakhi N; Li X; Khademhosseini A
    Mater Today Bio; 2019 Jun; 3():100024. PubMed ID: 32159151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current Trends in Metallic Orthopedic Biomaterials: From Additive Manufacturing to Bio-Functionalization, Infection Prevention, and Beyond.
    Zadpoor AA
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30201871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in Multifunctional Bioactive Coatings for Metallic Bone Implants.
    Nikolova MP; Apostolova MD
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Additive manufacturing of Ti6Al4V alloy via electron beam melting for the development of implants for the biomedical industry.
    Tamayo JA; Riascos M; Vargas CA; Baena LM
    Heliyon; 2021 May; 7(5):e06892. PubMed ID: 34027149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Research progress of metal biomaterials with potential applications as cardiovascular stents and their surface treatment methods to improve biocompatibility.
    Duan X; Yang Y; Zhang T; Zhu B; Wei G; Li H
    Heliyon; 2024 Feb; 10(4):e25515. PubMed ID: 38375258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative joint simulator study of the wear of metal-on-metal and alternative material combinations in hip replacements.
    Goldsmith AA; Dowson D; Isaac GH; Lancaster JG
    Proc Inst Mech Eng H; 2000; 214(1):39-47. PubMed ID: 10718049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitinol: From historical milestones to functional properties and biomedical applications.
    Alipour S; Taromian F; Ghomi ER; Zare M; Singh S; Ramakrishna S
    Proc Inst Mech Eng H; 2022 Nov; 236(11):1595-1612. PubMed ID: 36121059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forged to heal: The role of metallic cellular solids in bone tissue engineering.
    Marin E
    Mater Today Bio; 2023 Dec; 23():100777. PubMed ID: 37727867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.