These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36686951)

  • 21. De Novo Molecule Design by Translating from Reduced Graphs to SMILES.
    Pogány P; Arad N; Genway S; Pickett SD
    J Chem Inf Model; 2019 Mar; 59(3):1136-1146. PubMed ID: 30525594
    [TBL] [Abstract][Full Text] [Related]  

  • 22. De novo generation of dual-target ligands using adversarial training and reinforcement learning.
    Lu F; Li M; Min X; Li C; Zeng X
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34410338
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantum Generative Adversarial Learning.
    Lloyd S; Weedbrook C
    Phys Rev Lett; 2018 Jul; 121(4):040502. PubMed ID: 30095952
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Latent adversarial regularized autoencoder for high-dimensional probabilistic time series prediction.
    Zhang J; Dai Q
    Neural Netw; 2022 Nov; 155():383-397. PubMed ID: 36115164
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MTMol-GPT: De novo multi-target molecular generation with transformer-based generative adversarial imitation learning.
    Ai C; Yang H; Liu X; Dong R; Ding Y; Guo F
    PLoS Comput Biol; 2024 Jun; 20(6):e1012229. PubMed ID: 38924082
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MolFilterGAN: a progressively augmented generative adversarial network for triaging AI-designed molecules.
    Liu X; Zhang W; Tong X; Zhong F; Li Z; Xiong Z; Xiong J; Wu X; Fu Z; Tan X; Liu Z; Zhang S; Jiang H; Li X; Zheng M
    J Cheminform; 2023 Apr; 15(1):42. PubMed ID: 37031191
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Generating sequential electronic health records using dual adversarial autoencoder.
    Lee D; Yu H; Jiang X; Rogith D; Gudala M; Tejani M; Zhang Q; Xiong L
    J Am Med Inform Assoc; 2020 Jul; 27(9):1411-1419. PubMed ID: 32989459
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting LncRNA-Disease Association Based on Generative Adversarial Network.
    Du B; Tang L; Liu L; Zhou W
    Curr Gene Ther; 2022; 22(2):144-151. PubMed ID: 33998988
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CiwGAN and fiwGAN: Encoding information in acoustic data to model lexical learning with Generative Adversarial Networks.
    Beguš G
    Neural Netw; 2021 Jul; 139():305-325. PubMed ID: 33873122
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improving Chemical Autoencoder Latent Space and Molecular
    Bjerrum EJ; Sattarov B
    Biomolecules; 2018 Oct; 8(4):. PubMed ID: 30380783
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deep Convolutional Generative Adversarial Network (dcGAN) Models for Screening and Design of Small Molecules Targeting Cannabinoid Receptors.
    Bian Y; Wang J; Jun JJ; Xie XQ
    Mol Pharm; 2019 Nov; 16(11):4451-4460. PubMed ID: 31589460
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An artificial intelligence-driven agent for real-time head-and-neck IMRT plan generation using conditional generative adversarial network (cGAN).
    Li X; Wang C; Sheng Y; Zhang J; Wang W; Yin FF; Wu Q; Wu QJ; Ge Y
    Med Phys; 2021 Jun; 48(6):2714-2723. PubMed ID: 33577108
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Generative adversarial network based synthetic data training model for lightweight convolutional neural networks.
    Rather IH; Kumar S
    Multimed Tools Appl; 2023 May; ():1-23. PubMed ID: 37362646
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Information Theoretic Learning-Enhanced Dual-Generative Adversarial Networks With Causal Representation for Robust OOD Generalization.
    Zhou X; Zheng X; Shu T; Liang W; Wang KI; Qi L; Shimizu S; Jin Q
    IEEE Trans Neural Netw Learn Syst; 2023 Nov; PP():. PubMed ID: 37976189
    [TBL] [Abstract][Full Text] [Related]  

  • 35. De Novo Molecular Design by Combining Deep Autoencoder Recurrent Neural Networks with Generative Topographic Mapping.
    Sattarov B; Baskin II; Horvath D; Marcou G; Bjerrum EJ; Varnek A
    J Chem Inf Model; 2019 Mar; 59(3):1182-1196. PubMed ID: 30785751
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Feedback-AVPGAN: Feedback-guided generative adversarial network for generating antiviral peptides.
    Hasegawa K; Moriwaki Y; Terada T; Wei C; Shimizu K
    J Bioinform Comput Biol; 2022 Dec; 20(6):2250026. PubMed ID: 36514872
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An LSTM-based adversarial variational autoencoder framework for self-supervised neural decoding of behavioral choices.
    Salsabilian S; Lee C; Margolis D; Najafizadeh L
    J Neural Eng; 2024 Jul; 21(3):. PubMed ID: 38621379
    [No Abstract]   [Full Text] [Related]  

  • 38. Automated Generation of Novel Fragments Using Screening Data, a Dual SMILES Autoencoder, Transfer Learning and Syntax Correction.
    Bilsland AE; McAulay K; West R; Pugliese A; Bower J
    J Chem Inf Model; 2021 Jun; 61(6):2547-2559. PubMed ID: 34029470
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Generative adversarial network based telecom fraud detection at the receiving bank.
    Zheng YJ; Zhou XH; Sheng WG; Xue Y; Chen SY
    Neural Netw; 2018 Jun; 102():78-86. PubMed ID: 29558653
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimizing Latent Distributions for Non-Adversarial Generative Networks.
    Guo T; Xu C; Shi B; Xu C; Tao D
    IEEE Trans Pattern Anal Mach Intell; 2022 May; 44(5):2657-2672. PubMed ID: 33301400
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.