These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 36687054)
1. Novel Random Forest Ensemble Modeling Strategy Combined with Quantitative Structure-Property Relationship for Density Prediction of Energetic Materials. Li M; Lai W; Li R; Zhou J; Liu Y; Yu T; Zhang T; Tang H; Li H ACS Omega; 2023 Jan; 8(2):2752-2759. PubMed ID: 36687054 [TBL] [Abstract][Full Text] [Related]
2. Density Prediction Models for Energetic Compounds Merely Using Molecular Topology. Yang C; Chen J; Wang R; Zhang M; Zhang C; Liu J J Chem Inf Model; 2021 Jun; 61(6):2582-2593. PubMed ID: 33844526 [TBL] [Abstract][Full Text] [Related]
3. Theoretical insight into different energetic groups on the performance of energetic materials 2,5,7,9-tetranitro-2,5,7,9-tetraazabicyclo[4,3,0]nonane-8-one. Xiao T; Chen J; Xu J; Ma P; Ma C J Mol Model; 2023 Jul; 29(8):231. PubMed ID: 37407868 [TBL] [Abstract][Full Text] [Related]
4. QSPR modeling of detonation parameters and sensitivity of some energetic materials: DFT vs. PM3 calculations. Zhang J; Chen G; Gong X J Mol Model; 2017 Jun; 23(6):193. PubMed ID: 28534095 [TBL] [Abstract][Full Text] [Related]
5. Hybrid variable selection strategy coupled with random forest (RF) for quantitative analysis of methanol in methanol-gasoline via Raman spectroscopy. Li M; Xu Y; Men J; Yan C; Tang H; Zhang T; Li H Spectrochim Acta A Mol Biomol Spectrosc; 2021 Apr; 251():119430. PubMed ID: 33485240 [TBL] [Abstract][Full Text] [Related]
6. Development of quantitative structure-property relationships for predictive modeling and design of energetic materials. Morrill JA; Byrd EF J Mol Graph Model; 2008 Oct; 27(3):349-55. PubMed ID: 18653366 [TBL] [Abstract][Full Text] [Related]
7. Free variable selection QSPR study to predict (19)F chemical shifts of some fluorinated organic compounds using Random Forest and RBF-PLS methods. Goudarzi N Spectrochim Acta A Mol Biomol Spectrosc; 2016 Apr; 158():60-4. PubMed ID: 26820549 [TBL] [Abstract][Full Text] [Related]
8. [Rapid determination of active components in Ginkgo biloba leaves by near infrared spectroscopy combined with genetic algorithm joint extreme learning machine]. Ni HF; Si LT; Huang JP; Zan Q; Chen Y; Luan LJ; Wu YJ; Liu XS Zhongguo Zhong Yao Za Zhi; 2021 Jan; 46(1):110-117. PubMed ID: 33645059 [TBL] [Abstract][Full Text] [Related]
9. A new ensemble modeling method for multivariate calibration of near infrared spectra. Wang K; Bian X; Tan X; Wang H; Li Y Anal Methods; 2021 Mar; 13(11):1374-1380. PubMed ID: 33650616 [TBL] [Abstract][Full Text] [Related]
10. Improvement of NIR prediction ability by dual model optimization in fusion of NSIA and SA methods. Li C; Chen H; Zhang Y; Hong S; Ai W; Mo L Spectrochim Acta A Mol Biomol Spectrosc; 2022 Aug; 276():121247. PubMed ID: 35429868 [TBL] [Abstract][Full Text] [Related]
11. A multicenter random forest model for effective prognosis prediction in collaborative clinical research network. Li J; Tian Y; Zhu Y; Zhou T; Li J; Ding K; Li J Artif Intell Med; 2020 Mar; 103():101814. PubMed ID: 32143809 [TBL] [Abstract][Full Text] [Related]
12. An Ensemble Deep Belief Network Model Based on Random Subspace for NO Wang Y; Yang G; Xie R; Liu H; Liu K; Li X ACS Omega; 2021 Mar; 6(11):7655-7668. PubMed ID: 33778276 [TBL] [Abstract][Full Text] [Related]
13. A comparative study of the structure, stability and energetic performance of 5,5'-bitetrazole-1,1'-diolate based energetic ionic salts: future high energy density materials. Abraham BM; Ghule VD; Vaitheeswaran G Phys Chem Chem Phys; 2018 Dec; 20(47):29693-29707. PubMed ID: 30480268 [TBL] [Abstract][Full Text] [Related]
14. Accurate quantification of alkalinity of sintered ore by random forest model based on PCA and variable importance (PCA-VI-RF). Deng X; Yang G; Zhang H; Chen G Appl Opt; 2020 Mar; 59(7):2042-2049. PubMed ID: 32225725 [TBL] [Abstract][Full Text] [Related]
15. Comparison and improvement of the predictability and interpretability with ensemble learning models in QSPR applications. Chen CH; Tanaka K; Kotera M; Funatsu K J Cheminform; 2020 Mar; 12(1):19. PubMed ID: 33430997 [TBL] [Abstract][Full Text] [Related]
16. Multi-element Quantitative Analysis of Single Micro-sized Suspended Particles in Air with High Accuracy Based on Random Forest and Variable Selection Strategies. Chen T; Zhang T; Niu C; Feng T; Tang H; Cheng X; Li H Anal Chem; 2022 Dec; 94(50):17595-17605. PubMed ID: 36475646 [TBL] [Abstract][Full Text] [Related]
17. Random Forest Approach to QSPR Study of Fluorescence Properties Combining Quantum Chemical Descriptors and Solvent Conditions. Chen CH; Tanaka K; Funatsu K J Fluoresc; 2018 Mar; 28(2):695-706. PubMed ID: 29680928 [TBL] [Abstract][Full Text] [Related]
18. Molecular Design and Property Prediction for a Series of Novel Dicyclic Cyclotrimethylene Trinitramines (RDX) Derivatized as High Energy Density Materials. Shen C; Wang P; Lu M J Phys Chem A; 2015 Jul; 119(29):8250-5. PubMed ID: 26132775 [TBL] [Abstract][Full Text] [Related]
19. Molecular design and property prediction of high density polynitro[3.3.3]-propellane-derivatized frameworks as potential high explosives. Zhang Q; Zhang J; Qi X; Shreeve JM J Phys Chem A; 2014 Nov; 118(45):10857-65. PubMed ID: 25325391 [TBL] [Abstract][Full Text] [Related]
20. Rapid quantitative analysis of petroleum coke properties by laser-induced breakdown spectroscopy combined with random forest based on a variable selection strategy. Hu S; Ding J; Dong Y; Zhang T; Tang H; Li H RSC Adv; 2024 May; 14(23):16358-16367. PubMed ID: 38774617 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]