BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36687072)

  • 21. Microwave-assisted chemical recovery of glass fiber and epoxy resin from non-metallic components in waste printed circuit boards.
    Huang K; Zheng J; Yuan W; Wang X; Song Q; Li Y; Crittenden JC; Wang L; Wang J
    Waste Manag; 2021 Apr; 124():8-16. PubMed ID: 33592321
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of ionic liquid [MIm]HSO
    Qi Y; Yi X; Zhang Y; Meng F; Shu J; Xiu F; Sun Z; Sun S; Chen M
    Environ Sci Pollut Res Int; 2019 Nov; 26(32):33260-33268. PubMed ID: 31520374
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enrichment of the metallic components from waste printed circuit boards by a mechanical separation process using a stamp mill.
    Yoo JM; Jeong J; Yoo K; Lee JC; Kim W
    Waste Manag; 2009 Mar; 29(3):1132-7. PubMed ID: 18835149
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An integrated and sustainable hydrometallurgical process for enrichment of precious metals and selective separation of copper, zinc, and lead from a roasted sand.
    Liu G; Pan D; Wu Y; Yuan H; Yu L; Wang W
    Waste Manag; 2021 Aug; 132():133-141. PubMed ID: 34332369
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Waste Printed Circuit Board (PCB) Recycling Techniques.
    Ning C; Lin CSK; Hui DCW; McKay G
    Top Curr Chem (Cham); 2017 Apr; 375(2):43. PubMed ID: 28353257
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Leaching of Copper Contained in Waste Printed Circuit Boards, Using the Thiosulfate-Oxygen System: A Kinetic Approach.
    Salinas-Rodríguez E; Hernández-Ávila J; Cerecedo-Sáenz E; Arenas-Flores A; Veloz-Rodríguez MA; Toro N; Gutiérrez-Amador MDP; Acevedo-Sandoval OA
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407686
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of non-metallic parts of waste printed circuit boards on the properties of plasticised polyvinyl chloride recycled from the waste wire.
    Das RK; Gohatre OK; Biswal M; Mohanty S; Nayak SK
    Waste Manag Res; 2019 Jun; 37(6):569-577. PubMed ID: 30945618
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A green slurry electrolysis to recover valuable metals from waste printed circuit board (WPCB) in recyclable pH-neutral ethylene glycol.
    Liu K; Huang S; Jin Y; Ma L; Wang WX; Lam JC
    J Hazard Mater; 2022 Jul; 433():128702. PubMed ID: 35395522
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The separation of waste printed circuit board by dissolving bromine epoxy resin using organic solvent.
    Zhu P; Chen Y; Wang LY; Zhou M; Zhou J
    Waste Manag; 2013 Feb; 33(2):484-8. PubMed ID: 23177567
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Printed circuit board recycling: Physical processing and copper extraction by selective leaching.
    Silvas FP; Correa MM; Caldas MP; de Moraes VT; Espinosa DC; Tenório JA
    Waste Manag; 2015 Dec; 46():503-10. PubMed ID: 26323203
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recycling of WEEE: characterization of spent printed circuit boards from mobile phones and computers.
    Yamane LH; de Moraes VT; Espinosa DC; Tenório JA
    Waste Manag; 2011 Dec; 31(12):2553-8. PubMed ID: 21820883
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An advanced study on the hydrometallurgical processing of waste computer printed circuit boards to extract their valuable content of metals.
    Birloaga I; Coman V; Kopacek B; Vegliò F
    Waste Manag; 2014 Dec; 34(12):2581-6. PubMed ID: 25242605
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recovery of high-grade copper from metal-rich particles of waste printed circuit boards by ball milling and sieving.
    Liu F; Chen W; Wan B; Chen H; Ling Z; Chen Z; Fu Z
    Environ Technol; 2022 Jan; 43(4):514-523. PubMed ID: 32660381
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrasound-enhanced catalytic degradation of simulated dye wastewater using waste printed circuit boards: catalytic performance and artificial neuron network-based simulation.
    Jiang H; Zahmatkesh S; Yang J; Wang H; Wang C
    Environ Monit Assess; 2022 Nov; 195(1):144. PubMed ID: 36418598
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A sequential leaching procedure for efficient recovery of gold and silver from waste mobile phone printed circuit boards.
    Zhang ZY; Wu L; He K; Zhang FS
    Waste Manag; 2022 Nov; 153():13-19. PubMed ID: 36029533
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Study on the influence of various factors in the hydrometallurgical processing of waste printed circuit boards for copper and gold recovery.
    Birloaga I; De Michelis I; Ferella F; Buzatu M; Vegliò F
    Waste Manag; 2013 Apr; 33(4):935-41. PubMed ID: 23374398
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancement of leaching copper by organic agents from waste printed circuit boards in a sulfuric acid solution.
    He J; Zhang M; Chen H; Guo S; Zhu L; Xu J; Zhou K
    Chemosphere; 2022 Nov; 307(Pt 4):135924. PubMed ID: 35934095
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biofilm for leaching precious metals from waste printed circuit boards using biocyanidation technology.
    Hu J; Tang Y; Ai F; Lin M; Ruan J
    J Hazard Mater; 2021 Feb; 403():123586. PubMed ID: 32795820
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Leaching behavior of copper from waste printed circuit boards with Brønsted acidic ionic liquid.
    Huang J; Chen M; Chen H; Chen S; Sun Q
    Waste Manag; 2014 Feb; 34(2):483-8. PubMed ID: 24246577
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Selective recovery of copper, zinc and nickel from printed circuit boards by ammonia leaching under pressure].
    Wang M; Cao HB; Zhang Y
    Huan Jing Ke Xue; 2011 Feb; 32(2):596-602. PubMed ID: 21528589
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.