These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 36687092)
1. Improvement of Hyperthermia Properties of Iron Oxide Nanoparticles by Surface Coating. Vassallo M; Martella D; Barrera G; Celegato F; Coïsson M; Ferrero R; Olivetti ES; Troia A; Sözeri H; Parmeggiani C; Wiersma DS; Tiberto P; Manzin A ACS Omega; 2023 Jan; 8(2):2143-2154. PubMed ID: 36687092 [TBL] [Abstract][Full Text] [Related]
2. In silico evaluation of adverse eddy current effects in preclinical tests of magnetic hyperthermia. Vicentini M; Vassallo M; Ferrero R; Androulakis I; Manzin A Comput Methods Programs Biomed; 2022 Aug; 223():106975. PubMed ID: 35792363 [TBL] [Abstract][Full Text] [Related]
3. Influence of size, volume concentration and aggregation state on magnetic nanoparticle hyperthermia properties Ferrero R; Vicentini M; Manzin A Nanoscale Adv; 2024 Mar; 6(6):1739-1749. PubMed ID: 38482031 [TBL] [Abstract][Full Text] [Related]
4. Engineering Core-Shell Structures of Magnetic Ferrite Nanoparticles for High Hyperthermia Performance. Darwish MSA; Kim H; Lee H; Ryu C; Young Lee J; Yoon J Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32455690 [TBL] [Abstract][Full Text] [Related]
5. The Heating Efficiency and Imaging Performance of Magnesium Iron Oxide@tetramethyl Ammonium Hydroxide Nanoparticles for Biomedical Applications. Darwish MSA; Kim H; Bui MP; Le TA; Lee H; Ryu C; Lee JY; Yoon J Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33922608 [TBL] [Abstract][Full Text] [Related]
6. GO-Functionalized Large Magnetic Iron Oxide Nanoparticles with Enhanced Colloidal Stability and Hyperthermia Performance. Sugumaran PJ; Liu XL; Herng TS; Peng E; Ding J ACS Appl Mater Interfaces; 2019 Jun; 11(25):22703-22713. PubMed ID: 31244027 [TBL] [Abstract][Full Text] [Related]
7. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration. Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472 [TBL] [Abstract][Full Text] [Related]
8. One-pot preparation of hyaluronic acid-coated iron oxide nanoparticles for magnetic hyperthermia therapy and targeting CD44-overexpressing cancer cells. Soleymani M; Velashjerdi M; Shaterabadi Z; Barati A Carbohydr Polym; 2020 Jun; 237():116130. PubMed ID: 32241421 [TBL] [Abstract][Full Text] [Related]
9. Optimization Study on Specific Loss Power in Superparamagnetic Hyperthermia with Magnetite Nanoparticles for High Efficiency in Alternative Cancer Therapy. Caizer C Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33375292 [TBL] [Abstract][Full Text] [Related]
10. Correlation between effects of the particle size and magnetic field strength on the magnetic hyperthermia efficiency of dextran-coated magnetite nanoparticles. Shaterabadi Z; Nabiyouni G; Soleymani M Mater Sci Eng C Mater Biol Appl; 2020 Dec; 117():111274. PubMed ID: 32919638 [TBL] [Abstract][Full Text] [Related]
11. Induced heat property of polyethyleneglycol-coated iron oxide nanoparticles with dispersion stability for hyperthermia. Jang DH; Lee YI; Kim KS; Park ES; Kang SC; Yoon TJ; Choa YH J Nanosci Nanotechnol; 2013 Sep; 13(9):6098-102. PubMed ID: 24205608 [TBL] [Abstract][Full Text] [Related]
12. Comparative Heating Efficiency of Cobalt-, Manganese-, and Nickel-Ferrite Nanoparticles for a Hyperthermia Agent in Biomedicines. Demirci Dönmez ÇE; Manna PK; Nickel R; Aktürk S; van Lierop J ACS Appl Mater Interfaces; 2019 Feb; 11(7):6858-6866. PubMed ID: 30676734 [TBL] [Abstract][Full Text] [Related]
13. Ferromagnetic glass-coated microwires with good heating properties for magnetic hyperthermia. Talaat A; Alonso J; Zhukova V; Garaio E; García JA; Srikanth H; Phan MH; Zhukov A Sci Rep; 2016 Dec; 6():39300. PubMed ID: 27991557 [TBL] [Abstract][Full Text] [Related]
14. Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia. Shah RR; Davis TP; Glover AL; Nikles DE; Brazel CS J Magn Magn Mater; 2015 Aug; 387():96-106. PubMed ID: 25960599 [TBL] [Abstract][Full Text] [Related]
15. A Heat Dissipation Study of Iron Oxide Nanoparticles Embedded an Agar Phantom for the Purpose of Magnetic Fluid Hyperthermia. Yamamoto Y; Itoh T; Irieda T J Nanosci Nanotechnol; 2019 Sep; 19(9):5469-5475. PubMed ID: 30961698 [TBL] [Abstract][Full Text] [Related]
16. Coating of Magnetite Nanoparticles with Fucoidan to Enhance Magnetic Hyperthermia Efficiency. Gonçalves J; Nunes C; Ferreira L; Cruz MM; Oliveira H; Bastos V; Mayoral Á; Zhang Q; Ferreira P Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835704 [TBL] [Abstract][Full Text] [Related]
17. Structure and Magnetic Properties of SrFe Nikolenko PI; Nizamov TR; Bordyuzhin IG; Abakumov MA; Baranova YA; Kovalev AD; Shchetinin IV Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614686 [TBL] [Abstract][Full Text] [Related]
18. A versatile induction heating system for magnetic hyperthermia studies under different experimental conditions. Hadadian Y; Azimbagirad M; Navas EA; Pavan TZ Rev Sci Instrum; 2019 Jul; 90(7):074701. PubMed ID: 31370463 [TBL] [Abstract][Full Text] [Related]
19. Experimental and Modelling Analysis of the Hyperthermia Properties of Iron Oxide Nanocubes. Ferrero R; Barrera G; Celegato F; Vicentini M; Sözeri H; Yıldız N; Atila Dinçer C; Coïsson M; Manzin A; Tiberto P Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578497 [TBL] [Abstract][Full Text] [Related]
20. Experimental Evaluation on the Heating Efficiency of Magnetoferritin Nanoparticles in an Alternating Magnetic Field. Xu H; Pan Y Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31615049 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]