These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 36687207)

  • 1. A gait phase prediction model trained on benchmark datasets for evaluating a controller for prosthetic legs.
    Kim M; Hargrove LJ
    Front Neurorobot; 2022; 16():1064313. PubMed ID: 36687207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generating synthetic gait patterns based on benchmark datasets for controlling prosthetic legs.
    Kim M; Hargrove LJ
    J Neuroeng Rehabil; 2023 Sep; 20(1):115. PubMed ID: 37667313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep-Learning to Map a Benchmark Dataset of Non-amputee Ambulation for Controlling an Open Source Bionic Leg.
    Kim M; Hargrove LJ
    IEEE Robot Autom Lett; 2022 Oct; 7(4):10597-10604. PubMed ID: 36923993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of a Powered Ankle-Foot Prosthesis and Physical Therapy on Function for Individuals With Transfemoral Limb Loss: Rationale, Design, and Protocol for a Multisite Clinical Trial.
    Maikos JT; Pruziner AL; Hendershot BD; Herlihy DV; Chomack JM; Hyre MJ; Phillips SL; Sidiropoulos AN; Dearth CL; Nelson LM
    JMIR Res Protoc; 2024 Jan; 13():e53412. PubMed ID: 38277197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits.
    Au S; Berniker M; Herr H
    Neural Netw; 2008 May; 21(4):654-66. PubMed ID: 18499394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seamless and intuitive control of a powered prosthetic leg using deep neural network for transfemoral amputees.
    Kim M; Simon AM; Hargrove LJ
    Wearable Technol; 2022; 3():. PubMed ID: 37041885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous Gait Phase Estimation Using LSTM for Robotic Transfemoral Prosthesis Across Walking Speeds.
    Lee J; Hong W; Hur P
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1470-1477. PubMed ID: 34283718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gait Trajectory and Gait Phase Prediction Based on an LSTM Network.
    Su B; Gutierrez-Farewik EM
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33322673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of a powered ankle-foot prosthetic system during walking.
    Ferris AE; Aldridge JM; Rábago CA; Wilken JM
    Arch Phys Med Rehabil; 2012 Nov; 93(11):1911-8. PubMed ID: 22732369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fusion of Bilateral Lower-Limb Neuromechanical Signals Improves Prediction of Locomotor Activities.
    Hu B; Rouse E; Hargrove L
    Front Robot AI; 2018; 5():78. PubMed ID: 33500957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance of Deep Learning Models in Forecasting Gait Trajectories of Children with Neurological Disorders.
    Kolaghassi R; Al-Hares MK; Marcelli G; Sirlantzis K
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate Heuristic Terrain Prediction in Powered Lower-Limb Prostheses Using Onboard Sensors.
    Stolyarov R; Carney M; Herr H
    IEEE Trans Biomed Eng; 2021 Feb; 68(2):384-392. PubMed ID: 32406822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modular Neural Mechanisms for Gait Phase Tracking, Prediction, and Selection in Personalizable Knee-Ankle-Foot-Orthoses.
    Braun JM; Wörgötter F; Manoonpong P
    Front Neurorobot; 2018; 12():37. PubMed ID: 30090061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gait adaptations of transfemoral prosthesis users across multiple walking tasks.
    Kendell C; Lemaire ED; Kofman J; Dudek N
    Prosthet Orthot Int; 2016 Feb; 40(1):89-95. PubMed ID: 25715381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transfemoral amputee intact limb loading and compensatory gait mechanics during down slope ambulation and the effect of prosthetic knee mechanisms.
    Morgenroth DC; Roland M; Pruziner AL; Czerniecki JM
    Clin Biomech (Bristol); 2018 Jun; 55():65-72. PubMed ID: 29698851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Absent loading response knee flexion: The impact on gait kinetics and centre of mass motion in individuals with unilateral transfemoral amputation, and the effect of microprocessor controlled knee provision.
    Carse B; Hebenton J; Brady L; Davie-Smith F
    Clin Biomech (Bristol); 2023 Aug; 108():106061. PubMed ID: 37556922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gait Phase Detection in Walking and Stairs Using Machine Learning.
    Bauman VV; Brandon SCE
    J Biomech Eng; 2022 Dec; 144(12):. PubMed ID: 36062965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Powered knee and ankle prostheses enable natural ambulation on level ground and stairs for individuals with bilateral above-knee amputation: a case study.
    Hood S; Creveling S; Gabert L; Tran M; Lenzi T
    Sci Rep; 2022 Sep; 12(1):15465. PubMed ID: 36104371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-contraction patterns of trans-tibial amputee ankle and knee musculature during gait.
    Seyedali M; Czerniecki JM; Morgenroth DC; Hahn ME
    J Neuroeng Rehabil; 2012 May; 9():29. PubMed ID: 22640660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning-Based Gait Mode Prediction for Hybrid Knee Prosthesis Control.
    Kim M; Simon AM; Shah K; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-6. PubMed ID: 38083529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.