BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 36687764)

  • 1. HIERARCHICAL BRAIN EMBEDDING USING EXPLAINABLE GRAPH LEARNING.
    Tang H; Guo L; Fu X; Qu B; Thompson PM; Huang H; Zhan L
    Proc IEEE Int Symp Biomed Imaging; 2022 Mar; 2022():. PubMed ID: 36687764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Hierarchical Graph Learning Model for Brain Network Regression Analysis.
    Tang H; Guo L; Fu X; Qu B; Ajilore O; Wang Y; Thompson PM; Huang H; Leow AD; Zhan L
    Front Neurosci; 2022; 16():963082. PubMed ID: 35903810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling Model.
    Tang H; Ma G; Guo L; Fu X; Huang H; Zhan L
    IEEE Trans Neural Netw Learn Syst; 2024 Jun; 35(6):7363-7375. PubMed ID: 36374890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MVS-GCN: A prior brain structure learning-guided multi-view graph convolution network for autism spectrum disorder diagnosis.
    Wen G; Cao P; Bao H; Yang W; Zheng T; Zaiane O
    Comput Biol Med; 2022 Mar; 142():105239. PubMed ID: 35066446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graph Autoencoders for Embedding Learning in Brain Networks and Major Depressive Disorder Identification.
    Noman F; Ting CM; Kang H; Phan RC; Ombao H
    IEEE J Biomed Health Inform; 2024 Mar; 28(3):1644-1655. PubMed ID: 38194405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Explainable fMRI-based brain decoding via spatial temporal-pyramid graph convolutional network.
    Ye Z; Qu Y; Liang Z; Wang M; Liu Q
    Hum Brain Mapp; 2023 May; 44(7):2921-2935. PubMed ID: 36852610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sparse Hierarchical Representation Learning on Functional Brain Networks for Prediction of Autism Severity Levels.
    Kwon H; Kim JI; Son SY; Jang YH; Kim BN; Lee HJ; Lee JM
    Front Neurosci; 2022; 16():935431. PubMed ID: 35873817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hi-GCN: A hierarchical graph convolution network for graph embedding learning of brain network and brain disorders prediction.
    Jiang H; Cao P; Xu M; Yang J; Zaiane O
    Comput Biol Med; 2020 Dec; 127():104096. PubMed ID: 33166800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning models of cognitive processes constrained by human brain connectomes.
    Zhang Y; Farrugia N; Bellec P
    Med Image Anal; 2022 Aug; 80():102507. PubMed ID: 35738052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling spatio-temporal patterns of holistic functional brain networks via multi-head guided attention graph neural networks (Multi-Head GAGNNs).
    Yan J; Chen Y; Xiao Z; Zhang S; Jiang M; Wang T; Zhang T; Lv J; Becker B; Zhang R; Zhu D; Han J; Yao D; Kendrick KM; Liu T; Jiang X
    Med Image Anal; 2022 Aug; 80():102518. PubMed ID: 35749981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MAMF-GCN: Multi-scale adaptive multi-channel fusion deep graph convolutional network for predicting mental disorder.
    Pan J; Lin H; Dong Y; Wang Y; Ji Y
    Comput Biol Med; 2022 Sep; 148():105823. PubMed ID: 35872410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. XMR: an explainable multimodal neural network for drug response prediction.
    Wang Z; Zhou Y; Zhang Y; Mo YK; Wang Y
    Front Bioinform; 2023; 3():1164482. PubMed ID: 37600972
    [No Abstract]   [Full Text] [Related]  

  • 13. A deep connectome learning network using graph convolution for connectome-disease association study.
    Yang Y; Ye C; Ma T
    Neural Netw; 2023 Jul; 164():91-104. PubMed ID: 37148611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling Hierarchical Brain Networks via Volumetric Sparse Deep Belief Network.
    Dong Q; Ge F; Ning Q; Zhao Y; Lv J; Huang H; Yuan J; Jiang X; Shen D; Liu T
    IEEE Trans Biomed Eng; 2020 Jun; 67(6):1739-1748. PubMed ID: 31647417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CommPOOL: An interpretable graph pooling framework for hierarchical graph representation learning.
    Tang H; Ma G; He L; Huang H; Zhan L
    Neural Netw; 2021 Nov; 143():669-677. PubMed ID: 34375808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep reinforcement learning guided graph neural networks for brain network analysis.
    Zhao X; Wu J; Peng H; Beheshti A; Monaghan JJM; McAlpine D; Hernandez-Perez H; Dras M; Dai Q; Li Y; Yu PS; He L
    Neural Netw; 2022 Oct; 154():56-67. PubMed ID: 35853320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An explainable deep learning framework for characterizing and interpreting human brain states.
    Zhang S; Wang J; Yu S; Wang R; Han J; Zhao S; Liu T; Lv J
    Med Image Anal; 2023 Jan; 83():102665. PubMed ID: 36370512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signed graph representation learning for functional-to-structural brain network mapping.
    Tang H; Guo L; Fu X; Wang Y; Mackin S; Ajilore O; Leow AD; Thompson PM; Huang H; Zhan L
    Med Image Anal; 2023 Jan; 83():102674. PubMed ID: 36442294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep neural networks and kernel regression achieve comparable accuracies for functional connectivity prediction of behavior and demographics.
    He T; Kong R; Holmes AJ; Nguyen M; Sabuncu MR; Eickhoff SB; Bzdok D; Feng J; Yeo BTT
    Neuroimage; 2020 Feb; 206():116276. PubMed ID: 31610298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Invertible Dynamic Graph Convolutional Network for Multi-Center ASD Classification.
    Chen Y; Liu A; Fu X; Wen J; Chen X
    Front Neurosci; 2021; 15():828512. PubMed ID: 35185454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.