BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 36687764)

  • 21. MGraphDTA: deep multiscale graph neural network for explainable drug-target binding affinity prediction.
    Yang Z; Zhong W; Zhao L; Yu-Chian Chen C
    Chem Sci; 2022 Jan; 13(3):816-833. PubMed ID: 35173947
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interpretable Cognitive Ability Prediction: A Comprehensive Gated Graph Transformer Framework for Analyzing Functional Brain Networks.
    Qu G; Orlichenko A; Wang J; Zhang G; Xiao L; Zhang K; Wilson TW; Stephen JM; Calhoun VD; Wang YP
    IEEE Trans Med Imaging; 2024 Apr; 43(4):1568-1578. PubMed ID: 38109241
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Explainable Deep Relational Networks for Predicting Compound-Protein Affinities and Contacts.
    Karimi M; Wu D; Wang Z; Shen Y
    J Chem Inf Model; 2021 Jan; 61(1):46-66. PubMed ID: 33347301
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DRPreter: Interpretable Anticancer Drug Response Prediction Using Knowledge-Guided Graph Neural Networks and Transformer.
    Shin J; Piao Y; Bang D; Kim S; Jo K
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430395
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MGAT: Multi-view Graph Attention Networks.
    Xie Y; Zhang Y; Gong M; Tang Z; Han C
    Neural Netw; 2020 Dec; 132():180-189. PubMed ID: 32911303
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatio-temporal modeling of connectome-scale brain network interactions via time-evolving graphs.
    Yuan J; Li X; Zhang J; Luo L; Dong Q; Lv J; Zhao Y; Jiang X; Zhang S; Zhang W; Liu T
    Neuroimage; 2018 Oct; 180(Pt B):350-369. PubMed ID: 29102809
    [TBL] [Abstract][Full Text] [Related]  

  • 27. GAT-LI: a graph attention network based learning and interpreting method for functional brain network classification.
    Hu J; Cao L; Li T; Dong S; Li P
    BMC Bioinformatics; 2021 Jul; 22(1):379. PubMed ID: 34294047
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adversarially Trained Persistent Homology Based Graph Convolutional Network for Disease Identification Using Brain Connectivity.
    Bian C; Xia N; Xie A; Cong S; Dong Q
    IEEE Trans Med Imaging; 2024 Jan; 43(1):503-516. PubMed ID: 37643097
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Graph embedding ensemble methods based on the heterogeneous network for lncRNA-miRNA interaction prediction.
    Zhao C; Qiu Y; Zhou S; Liu S; Zhang W; Niu Y
    BMC Genomics; 2020 Dec; 21(Suppl 13):867. PubMed ID: 33334307
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MNC-Net: Multi-task graph structure learning based on node clustering for early Parkinson's disease diagnosis.
    Huang L; Ye X; Yang M; Pan L; Zheng SH
    Comput Biol Med; 2023 Jan; 152():106308. PubMed ID: 36462371
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interpretable time-aware and co-occurrence-aware network for medical prediction.
    Sun C; Dui H; Li H
    BMC Med Inform Decis Mak; 2021 Nov; 21(1):305. PubMed ID: 34727940
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interpreting the Mechanism of Synergism for Drug Combinations Using Attention-Based Hierarchical Graph Pooling.
    Dong Z; Zhang H; Chen Y; Payne PRO; Li F
    Cancers (Basel); 2023 Aug; 15(17):. PubMed ID: 37686486
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A structural enriched functional network: An application to predict brain cognitive performance.
    Kim M; Bao J; Liu K; Park BY; Park H; Baik JY; Shen L
    Med Image Anal; 2021 Jul; 71():102026. PubMed ID: 33848962
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Leveraging Brain Modularity Prior for Interpretable Representation Learning of fMRI.
    Wang Q; Wang W; Fang Y; Yap PT; Zhu H; Li HJ; Qiao L; Liu M
    IEEE Trans Biomed Eng; 2024 Feb; PP():. PubMed ID: 38412079
    [TBL] [Abstract][Full Text] [Related]  

  • 35. BrainTGL: A dynamic graph representation learning model for brain network analysis.
    Liu L; Wen G; Cao P; Hong T; Yang J; Zhang X; Zaiane OR
    Comput Biol Med; 2023 Feb; 153():106521. PubMed ID: 36630830
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Augmented Graph Neural Network with hierarchical global-based residual connections.
    Rassil A; Chougrad H; Zouaki H
    Neural Netw; 2022 Jun; 150():149-166. PubMed ID: 35313247
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure can predict function in the human brain: a graph neural network deep learning model of functional connectivity and centrality based on structural connectivity.
    Neudorf J; Kress S; Borowsky R
    Brain Struct Funct; 2022 Jan; 227(1):331-343. PubMed ID: 34633514
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Explaining decisions of graph convolutional neural networks: patient-specific molecular subnetworks responsible for metastasis prediction in breast cancer.
    Chereda H; Bleckmann A; Menck K; Perera-Bel J; Stegmaier P; Auer F; Kramer F; Leha A; Beißbarth T
    Genome Med; 2021 Mar; 13(1):42. PubMed ID: 33706810
    [TBL] [Abstract][Full Text] [Related]  

  • 39. iHerd: an integrative hierarchical graph representation learning framework to quantify network changes and prioritize risk genes in disease.
    Duan Z; Dai Y; Hwang A; Lee C; Xie K; Xiao C; Xu M; Girgenti MJ; Zhang J
    PLoS Comput Biol; 2023 Sep; 19(9):e1011444. PubMed ID: 37695793
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metric learning with spectral graph convolutions on brain connectivity networks.
    Ktena SI; Parisot S; Ferrante E; Rajchl M; Lee M; Glocker B; Rueckert D
    Neuroimage; 2018 Apr; 169():431-442. PubMed ID: 29278772
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.