These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 3668803)

  • 1. A minimax approach to the single-point method of drug dosing.
    Bahn MM; Landaw EM
    J Pharmacokinet Biopharm; 1987 Jun; 15(3):255-69. PubMed ID: 3668803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Further considerations of the "single-point single-dose" method to estimate individual maintenance dosage requirements.
    Unadkat JD; Rowland M
    Ther Drug Monit; 1982; 4(2):201-8. PubMed ID: 7101388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A probabilistic approach to the single-point, single-dose problem.
    Briggs WL; Phelps RW; Swanson GD
    IEEE Trans Biomed Eng; 1990 Jan; 37(1):80-4. PubMed ID: 2303274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maintenance-dose prediction based on a single determination of concentration: dose of parent drug required to give a desired steady-state concentration of metabolite.
    Wilson JM; Slattery JT
    J Pharm Sci; 1983 Oct; 72(10):1174-8. PubMed ID: 6644567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The single-point method of dosage prediction: pharmacokinetic basis and method optimization.
    Love BL; Tsuei SE; Thomas J; Nation RL
    Biopharm Drug Dispos; 1982; 3(3):191-201. PubMed ID: 7139060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Steady-state plasma concentrations as a function of the absorption rate and dosing interval for drugs exhibiting concentration-dependent clearance: consequences for phenytoin therapy.
    Sawchuk RJ; Rector TS
    J Pharmacokinet Biopharm; 1979 Dec; 7(6):543-55. PubMed ID: 529023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of maintenance dose required to attain a desired drug concentration at steady-state from a single determination of concentration after an initial dose.
    Slattery JT; Gibaldi M; Koup JR
    Clin Pharmacokinet; 1980; 5(4):377-85. PubMed ID: 7398172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The method of relative drug accumulation: a simple method for illustrating the effects of different drug dosing regimens and variability in drug elimination on time courses of drug concentrations.
    Bjornsson TD
    Clin Pharmacol Ther; 1992 Mar; 51(3):266-70. PubMed ID: 1544286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid compartment- and model-independent estimation of times required to attain various fractions of steady-state plasma level during multiple dosing of drugs obeying superposition principle and having various absorption or infusion kinetics.
    Chiou WL
    J Pharm Sci; 1979 Dec; 68(12):1546-7. PubMed ID: 529049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dosage intervals based on mean residence times.
    Wagner JG
    J Pharm Sci; 1987 Jan; 76(1):35-8. PubMed ID: 3585720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacokinetic comparison of the one-point method with other methods in predicting steady state drug concentrations in multiple dosing.
    Ritschel WA; Erni W
    Int J Clin Pharmacol Biopharm; 1977 Jun; 15(6):279-87. PubMed ID: 881281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypothesis for the individualisation of drug dosage.
    Koup JR; Sack CM; Smith AL; Gibaldi M
    Clin Pharmacokinet; 1979; 4(6):460-9. PubMed ID: 519932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of dose range on degree of nonlinearity detected in dose-proportionality studies for drugs with saturable elimination: single-dose and steady-state studies.
    Shepard TA; Lordi N; Sparrow PE
    Pharm Res; 1993 Feb; 10(2):289-93. PubMed ID: 8456079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. General theory for rapidly establishing steady state drug concentrations using two consecutive constant rate intravenous infusions.
    Vaughan DP; Tucker GT
    Eur J Clin Pharmacol; 1975 Dec; 9(2-3):235-8. PubMed ID: 1233268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A pharmacokinetic model-independent approach for estimating dose required to give desired steady-state trough concentrations of drug in plasma.
    Slattery JT
    J Pharmacokinet Biopharm; 1980 Feb; 8(1):105-10. PubMed ID: 7381689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of multiple-dose blood level curves of drugs administered four times daily at non-uniform dosing intervals.
    Ng PK
    Int J Biomed Comput; 1981 May; 12(3):217-26. PubMed ID: 7251215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of absolute bioavailability assuming steady state apparent volume of distribution remains constant.
    Collier PS; Riegelman S
    J Pharmacokinet Biopharm; 1983 Apr; 11(2):205-14. PubMed ID: 6886975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drug dosage in renal disease.
    Dettli L
    Clin Pharmacokinet; 1976; 1(2):126-34. PubMed ID: 797495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid estimation of volume of distribution after a short intravenous infusion and its application to dosing adjustments.
    Chiou WL; Peng GW; Nation RL
    J Clin Pharmacol; 1978; 18(5-6):266-71. PubMed ID: 641215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using pharmacokinetics in drug therapy II: Rapid estimates of dosage regimens and blood levels without knowledge of pharmacokinetic variables.
    Schumacher GE; Griener JC
    Am J Hosp Pharm; 1978 Apr; 35(4):454-9. PubMed ID: 645719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.