These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 36688417)

  • 1. Self-assembly of shell protein and native enzyme in a crowded environment leads to catalytically active phase condensates.
    Kumar G; Sinha S
    Biochem J; 2023 Apr; 480(8):539-553. PubMed ID: 36688417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Major Shell Protein of 1,2-Propanediol Utilization Microcompartment Conserves the Activity of Its Signature Enzyme at Higher Temperatures.
    Kumar G; Bari NK; Hazra JP; Sinha S
    Chembiochem; 2022 May; 23(9):e202100694. PubMed ID: 35229962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linking the Salmonella enterica 1,2-Propanediol Utilization Bacterial Microcompartment Shell to the Enzymatic Core via the Shell Protein PduB.
    Kennedy NW; Mills CE; Abrahamson CH; Archer AG; Shirman S; Jewett MC; Mangan NM; Tullman-Ercek D
    J Bacteriol; 2022 Sep; 204(9):e0057621. PubMed ID: 35575582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The N Terminus of the PduB Protein Binds the Protein Shell of the Pdu Microcompartment to Its Enzymatic Core.
    Lehman BP; Chowdhury C; Bobik TA
    J Bacteriol; 2017 Apr; 199(8):. PubMed ID: 28138097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic analysis of the protein shell of the microcompartments involved in coenzyme B12-dependent 1,2-propanediol degradation by Salmonella.
    Cheng S; Sinha S; Fan C; Liu Y; Bobik TA
    J Bacteriol; 2011 Mar; 193(6):1385-92. PubMed ID: 21239588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Generic Self-Assembly Process in Microcompartments and Synthetic Protein Nanotubes.
    Uddin I; Frank S; Warren MJ; Pickersgill RW
    Small; 2018 May; 14(19):e1704020. PubMed ID: 29573556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The N-terminal region of the medium subunit (PduD) packages adenosylcobalamin-dependent diol dehydratase (PduCDE) into the Pdu microcompartment.
    Fan C; Bobik TA
    J Bacteriol; 2011 Oct; 193(20):5623-8. PubMed ID: 21821773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions between the termini of lumen enzymes and shell proteins mediate enzyme encapsulation into bacterial microcompartments.
    Fan C; Cheng S; Sinha S; Bobik TA
    Proc Natl Acad Sci U S A; 2012 Sep; 109(37):14995-5000. PubMed ID: 22927404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Salmonella enterica, Ethanolamine Utilization Is Repressed by 1,2-Propanediol To Prevent Detrimental Mixing of Components of Two Different Bacterial Microcompartments.
    Sturms R; Streauslin NA; Cheng S; Bobik TA
    J Bacteriol; 2015 Jul; 197(14):2412-21. PubMed ID: 25962913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembling Shell Proteins PduA and PduJ have Essential and Redundant Roles in Bacterial Microcompartment Assembly.
    Kennedy NW; Ikonomova SP; Slininger Lee M; Raeder HW; Tullman-Ercek D
    J Mol Biol; 2021 Jan; 433(2):166721. PubMed ID: 33227310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomolecular Condensates Regulate Enzymatic Activity under a Crowded Milieu: Synchronization of Liquid-Liquid Phase Separation and Enzymatic Transformation.
    Saini B; Mukherjee TK
    J Phys Chem B; 2023 Jan; 127(1):180-193. PubMed ID: 36594499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic Growth of Multicomponent Microcompartment Shells.
    Waltmann C; Kennedy NW; Mills CE; Roth EW; Ikonomova SP; Tullman-Ercek D; Olvera de la Cruz M
    ACS Nano; 2023 Aug; 17(16):15751-15762. PubMed ID: 37552700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microcompartment assembly around multicomponent fluid cargoes.
    Tsidilkovski L; Mohajerani F; Hagan MF
    J Chem Phys; 2022 Jun; 156(24):245104. PubMed ID: 35778087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disordered regions endow structural flexibility to shell proteins and function towards shell-enzyme interactions in 1,2-propanediol utilization microcompartment.
    Kumar G; Hazra JP; Sinha S
    J Biomol Struct Dyn; 2023; 41(18):8891-8901. PubMed ID: 36318590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localization of proteins to the 1,2-propanediol utilization microcompartment by non-native signal sequences is mediated by a common hydrophobic motif.
    Jakobson CM; Kim EY; Slininger MF; Chien A; Tullman-Ercek D
    J Biol Chem; 2015 Oct; 290(40):24519-33. PubMed ID: 26283792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of Scaffold-Mediated Microcompartment Assembly and Size Control.
    Mohajerani F; Sayer E; Neil C; Inlow K; Hagan MF
    ACS Nano; 2021 Mar; 15(3):4197-4212. PubMed ID: 33683101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein morphology drives the structure and catalytic activity of bio-inorganic hybrids.
    Kaur H; Bari NK; Garg A; Sinha S
    Int J Biol Macromol; 2021 Apr; 176():106-116. PubMed ID: 33556398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate channels revealed in the trimeric Lactobacillus reuteri bacterial microcompartment shell protein PduB.
    Pang A; Liang M; Prentice MB; Pickersgill RW
    Acta Crystallogr D Biol Crystallogr; 2012 Dec; 68(Pt 12):1642-52. PubMed ID: 23151629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Wrappers of the 1,2-Propanediol Utilization Bacterial Microcompartments.
    Bari NK; Kumar G; Sinha S
    Adv Exp Med Biol; 2018; 1112():333-344. PubMed ID: 30637708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.