These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36688582)

  • 1. Wild soybean salt tolerance metabolic model: Assessment of storage protein mobilization in cotyledons and C/N balance in the hypocotyl/root axis.
    Hu Y; Li M; Hu Y; Han D; Wei J; Zhang T; Guo J; Shi L
    Physiol Plant; 2023 Jan; 175(1):e13863. PubMed ID: 36688582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated metabolomic and transcriptomic strategies to reveal alkali-resistance mechanisms in wild soybean during post-germination growth stage.
    Wang X; Hu Y; Wang Y; Wang Y; Gao S; Zhang T; Guo J; Shi L
    Planta; 2023 Apr; 257(5):95. PubMed ID: 37036535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Genome-Scale Metabolic Model of Soybean (
    Moreira TB; Shaw R; Luo X; Ganguly O; Kim HS; Coelho LGF; Cheung CYM; Rhys Williams TC
    Plant Physiol; 2019 Aug; 180(4):1912-1929. PubMed ID: 31171578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Salt Tolerance in
    Li M; Guo R; Jiao Y; Jin X; Zhang H; Shi L
    Front Plant Sci; 2017; 8():1101. PubMed ID: 28690628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Glycine max sodium/hydrogen exchanger enhances salt tolerance through maintaining higher Na
    Sun TJ; Fan L; Yang J; Cao RZ; Yang CY; Zhang J; Wang DM
    BMC Plant Biol; 2019 Nov; 19(1):469. PubMed ID: 31690290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flooding of the root system in soybean: biochemical and molecular aspects of N metabolism in the nodule during stress and recovery.
    Souza SC; Mazzafera P; Sodek L
    Amino Acids; 2016 May; 48(5):1285-95. PubMed ID: 26825550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic Profiles Reveal Changes in Wild and Cultivated Soybean Seedling Leaves under Salt Stress.
    Zhang J; Yang D; Li M; Shi L
    PLoS One; 2016; 11(7):e0159622. PubMed ID: 27442489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological and metabolomics analyses of young and old leaves from wild and cultivated soybean seedlings under low-nitrogen conditions.
    Liu Y; Li M; Xu J; Liu X; Wang S; Shi L
    BMC Plant Biol; 2019 Sep; 19(1):389. PubMed ID: 31492111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative proteomic and physiological analyses reveal the protective effect of exogenous calcium on the germinating soybean response to salt stress.
    Yin Y; Yang R; Han Y; Gu Z
    J Proteomics; 2015 Jan; 113():110-26. PubMed ID: 25284050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic analysis of soybean hypocotyl during recovery after flooding stress.
    Khan MN; Sakata K; Komatsu S
    J Proteomics; 2015 May; 121():15-27. PubMed ID: 25818724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants.
    Hao YJ; Wei W; Song QX; Chen HW; Zhang YQ; Wang F; Zou HF; Lei G; Tian AG; Zhang WK; Ma B; Zhang JS; Chen SY
    Plant J; 2011 Oct; 68(2):302-13. PubMed ID: 21707801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of Peroxidase Gene
    Jin T; Sun Y; Zhao R; Shan Z; Gai J; Li Y
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31370221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacillus firmus (SW5) augments salt tolerance in soybean (Glycine max L.) by modulating root system architecture, antioxidant defense systems and stress-responsive genes expression.
    El-Esawi MA; Alaraidh IA; Alsahli AA; Alamri SA; Ali HM; Alayafi AA
    Plant Physiol Biochem; 2018 Nov; 132():375-384. PubMed ID: 30268029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated Physiological, Transcriptomic, and Metabolomic Analyses Revealed Molecular Mechanism for Salt Resistance in Soybean Roots.
    Jin J; Wang J; Li K; Wang S; Qin J; Zhang G; Na X; Wang X; Bi Y
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural variation in the promoter of GsERD15B affects salt tolerance in soybean.
    Jin T; Sun Y; Shan Z; He J; Wang N; Gai J; Li Y
    Plant Biotechnol J; 2021 Jun; 19(6):1155-1169. PubMed ID: 33368860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression of an aquaporin protein from Aspergillus glaucus confers salt tolerance in transgenic soybean.
    Li F; Ni H; Yan W; Xie Y; Liu X; Tan X; Zhang L; Zhang SH
    Transgenic Res; 2021 Dec; 30(6):727-737. PubMed ID: 34460070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Salt-tolerant and -sensitive seedlings exhibit noteworthy differences in lipolytic events in response to salt stress.
    Gogna M; Bhatla SC
    Plant Signal Behav; 2020 Apr; 15(4):1737451. PubMed ID: 32141358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photosynthetic characteristics and metabolic analyses of two soybean genotypes revealed adaptive strategies to low-nitrogen stress.
    Li M; Xu J; Wang X; Fu H; Zhao M; Wang H; Shi L
    J Plant Physiol; 2018 Oct; 229():132-141. PubMed ID: 30081252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression Analyses of Soybean VOZ Transcription Factors and the Role of
    Li B; Zheng JC; Wang TT; Min DH; Wei WL; Chen J; Zhou YB; Chen M; Xu ZS; Ma YZ
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32245276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Arabidopsis mutant disrupted in ASN2 encoding asparagine synthetase 2 exhibits low salt stress tolerance.
    Maaroufi-Dguimi H; Debouba M; Gaufichon L; Clément G; Gouia H; Hajjaji A; Suzuki A
    Plant Physiol Biochem; 2011 Jun; 49(6):623-8. PubMed ID: 21478030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.