These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 36688900)

  • 1. Fabrication and development of a microfluidic paper-based immunosorbent assay platform (μPISA) for colorimetric detection of hepatitis C.
    Ozefe F; Arslan Yildiz A
    Analyst; 2023 Feb; 148(4):898-905. PubMed ID: 36688900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser-printed paper ELISA and hydroxyapatite immobilization for colorimetric congenital anomalies screening in saliva.
    Moulahoum H; Ghorbanizamani F; Timur S
    Anal Chim Acta; 2024 Jun; 1306():342617. PubMed ID: 38692789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wax screen-printable ink for massive fabrication of negligible-to-nil cost fabric-based microfluidic (bio)sensing devices for colorimetric analysis of sweat.
    Tzianni EI; Sakkas VA; Prodromidis MI
    Talanta; 2024 Mar; 269():125475. PubMed ID: 38039670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sample-to-Answer Robotic ELISA.
    Zhou C; Fang Z; Zhao C; Mai X; Emami S; Taha AY; Sun G; Pan T
    Anal Chem; 2021 Aug; 93(33):11424-11432. PubMed ID: 34378906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A cost-effective and facile technique for realizing fabric based microfluidic channels using beeswax and PVC stencils.
    P L; Shirsat A; Gardi P; Kore S; Joshi V; Patra R; Maji D
    Anal Methods; 2024 May; 16(21):3372-3384. PubMed ID: 38747244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Paper-based microfluidic system and chiroptical functionalized gold nano-oval for colorimetric detection of L-Tryptophan.
    Karimian M; Dashtian K; Zare-Dorabei R; Norouzi S
    Anal Chim Acta; 2024 Jan; 1285():342022. PubMed ID: 38057059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The pursuit of further miniaturization of screen printed micro paper-based analytical devices utilizing controlled penetration towards optimized channel patterning.
    Tseng HY; Lizama JH; Shen YW; Chen CJ
    Sci Rep; 2021 Nov; 11(1):21496. PubMed ID: 34728732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication Methods for Microfluidic Devices: An Overview.
    Scott SM; Ali Z
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33803689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting Dimensions in Microfluidic Paper Based Analytical Devices.
    Catalan-Carrio R; Akyazi T; Basabe-Desmonts L; Benito-Lopez F
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural Indigenous Paper Substrates for Colorimetric Bioassays in Portable Analytical Systems: Sustainable Solutions from the Rain Forests to the Great Plains.
    Brito-Pereira R; Silva Macedo A; Ribeiro C; Cardoso VF; Lanceros-Méndez S
    ACS Appl Mater Interfaces; 2023 Oct; 15(40):46747-46755. PubMed ID: 37782693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pronounced effect of lamination on plasma separation from whole blood by microfluidic paper-based analytical devices.
    Ardakani F; Hemmateenejad B
    Anal Chim Acta; 2023 Oct; 1279():341767. PubMed ID: 37827667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smart Microfluidics: Synergy of Machine Learning and Microfluidics in the Development of Medical Diagnostics for Chronic and Emerging Infectious Diseases.
    Madukwe DUP; Mike-Ogburia MI; Nduka N; Nzeobi J
    Crit Rev Biomed Eng; 2023; 51(1):41-58. PubMed ID: 37522540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser-induced graphene-based digital microfluidics (gDMF): a versatile platform with sub-one-dollar cost.
    Liu K; He Y; Lu Z; Xu Q; Wang L; Liu Z; Khou J; Ye J; Liu C; Zhang T
    Lab Chip; 2024 Jun; 24(12):3125-3134. PubMed ID: 38770672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Paper-Based Microfluidic Chips for Food Hazard Factor Detection: Fabrication, Modification, and Application.
    Liang M; Zhang G; Song J; Tan M; Su W
    Foods; 2023 Nov; 12(22):. PubMed ID: 38002165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and characterization of microfluidic devices based on boron-modified epoxy resin using CO
    Mansour H; Soliman EA; El-Bab AMF; Matsushita Y; Abdel-Mawgood AL
    Sci Rep; 2023 Aug; 13(1):12623. PubMed ID: 37537206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Introducing natural thermoplastic shellac to microfluidics: A green fabrication method for point-of-care devices.
    Lausecker R; Badilita V; Gleißner U; Wallrabe U
    Biomicrofluidics; 2016 Jul; 10(4):044101. PubMed ID: 27478525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a cloud-based flow rate tool for eNAMPT biomarker detection.
    Buchanan BC; Tang Y; Lopez H; Casanova NG; Garcia JGN; Yoon JY
    PNAS Nexus; 2024 May; 3(5):pgae173. PubMed ID: 38711808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Office paper and laser printing: a versatile and affordable approach for fabricating paper-based analytical devices with multimodal detection capabilities.
    Sousa LR; Guinati BGS; Maciel LIL; Baldo TA; Duarte LC; Takeuchi RM; Faria RC; Vaz BG; Paixão TRLC; Coltro WKT
    Lab Chip; 2024 Jan; 24(3):467-479. PubMed ID: 38126917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fully integrated rapid microfluidic device translated from conventional 96-well ELISA kit.
    Uddin MJ; Bhuiyan NH; Shim JS
    Sci Rep; 2021 Jan; 11(1):1986. PubMed ID: 33479284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic magnetic detection system combined with a DNA framework-mediated immune-sandwich assay for rapid and sensitive detection of tumor-derived exosomes.
    Qian Q; Wei Y; Xu Y; Zheng M; Wang C; Zhang S; Xie X; Ye C; Mi X
    Microsyst Nanoeng; 2023; 9():139. PubMed ID: 38025882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.