These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 36689158)

  • 1. Efficient synthesis of Ala-Tyr by L-amino acid ligase coupled with ATP regeneration system.
    Cui X; Du X; Zhao Q; Hu Y; Tian C; Song W
    Appl Biochem Biotechnol; 2023 Jul; 195(7):4336-4346. PubMed ID: 36689158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Expression of polyphosphate kinase from
    Huang X; Li Y; DU C; Yuan W
    Sheng Wu Gong Cheng Xue Bao; 2022 Dec; 38(12):4669-4680. PubMed ID: 36593201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single mutation alters the substrate specificity of L-amino acid ligase.
    Tsuda T; Asami M; Koguchi Y; Kojima S
    Biochemistry; 2014 Apr; 53(16):2650-60. PubMed ID: 24702628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro biosynthesis of ATP from adenosine and polyphosphate.
    Sun C; Li Z; Ning X; Xu W; Li Z
    Bioresour Bioprocess; 2021 Nov; 8(1):117. PubMed ID: 38650279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic Production of Glutathione Coupling with an ATP Regeneration System Based on Polyphosphate Kinase.
    Cao H; Li C; Zhao J; Wang F; Tan T; Liu L
    Appl Biochem Biotechnol; 2018 Jun; 185(2):385-395. PubMed ID: 29164506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-pot synthesis of glutathione by a two-enzyme cascade using a thermophilic ATP regeneration system.
    Zhang X; Wu H; Huang B; Li Z; Ye Q
    J Biotechnol; 2017 Jan; 241():163-169. PubMed ID: 27919691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of aminoacyl prolines using the adenylation domain of nonribosomal peptide synthetase with class III polyphosphate kinase 2-mediated ATP regeneration.
    Suzuki S; Hara R; Kino K
    J Biosci Bioeng; 2018 Jun; 125(6):644-648. PubMed ID: 29366718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermostable ATP regeneration system using polyphosphate kinase from Thermosynechococcus elongatus BP-1 for D-amino acid dipeptide synthesis.
    Sato M; Masuda Y; Kirimura K; Kino K
    J Biosci Bioeng; 2007 Feb; 103(2):179-84. PubMed ID: 17368402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of RizA, an L-amino-acid ligase from Bacillus subtilis.
    Kagawa W; Arai T; Ishikura S; Kino K; Kurumizaka H
    Acta Crystallogr F Struct Biol Commun; 2015 Sep; 71(Pt 9):1125-30. PubMed ID: 26323296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering an ATP-dependent D-Ala:D-Ala ligase for synthesizing amino acid amides from amino acids.
    Miki Y; Okazaki S; Asano Y
    J Ind Microbiol Biotechnol; 2017 May; 44(4-5):667-675. PubMed ID: 27585794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-Immobilization of RizA Variants with Acetate Kinase for the Production of Bioactive Arginyl Dipeptides.
    Bordewick S; Berger RG; Ersoy F
    Molecules; 2022 Jul; 27(14):. PubMed ID: 35889224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Novel L-amino acid ligases catalyzing oligopeptide synthesis].
    Kino K
    Yakugaku Zasshi; 2010 Nov; 130(11):1463-9. PubMed ID: 21048404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering the thermal stability of a polyphosphate kinase by ancestral sequence reconstruction to expand the temperature boundary for an industrially applicable ATP regeneration system.
    Li Z-L; Sun C-Q; Qing Z-L; Li Z-M; Liu H-L
    Appl Environ Microbiol; 2024 Feb; 90(2):e0157423. PubMed ID: 38236018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective production of Pro-Gly by mutagenesis of l-amino acid ligase.
    Kino H; Nakajima S; Arai T; Kino K
    J Biosci Bioeng; 2016 Aug; 122(2):155-9. PubMed ID: 27017332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New L-amino acid ligases catalyzing oligopeptide synthesis from various microorganisms.
    Arai T; Kino K
    Biosci Biotechnol Biochem; 2010; 74(8):1572-7. PubMed ID: 20699590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel one-pot ATP regeneration system based on three-enzyme cascade for industrial CTP production.
    Wang J; Zheng C; Zhang T; Liu Y; Cheng Z; Liu D; Ying H; Niu H
    Biotechnol Lett; 2017 Dec; 39(12):1875-1881. PubMed ID: 28861634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rational design of substrate binding pockets in polyphosphate kinase for use in cost-effective ATP-dependent cascade reactions.
    Cao H; Nie K; Li C; Xu H; Wang F; Tan T; Liu L
    Appl Microbiol Biotechnol; 2017 Jul; 101(13):5325-5332. PubMed ID: 28417169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. D-Alanyl-D-lactate and D-alanyl-D-alanine synthesis by D-alanyl-D-alanine ligase from vancomycin-resistant Leuconostoc mesenteroides. Effects of a phenylalanine 261 to tyrosine mutation.
    Park IS; Walsh CT
    J Biol Chem; 1997 Apr; 272(14):9210-4. PubMed ID: 9083053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving the enzymatic activity of l-amino acid α-ligase for imidazole dipeptide production by site-directed mutagenesis.
    Kino K; Komabayashi T; Hashida A; Kuramoto A
    Biosci Biotechnol Biochem; 2023 Mar; 87(4):389-394. PubMed ID: 36694927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel L-amino acid ligase from Bacillus subtilis NBRC3134, a microorganism producing peptide-antibiotic rhizocticin.
    Kino K; Kotanaka Y; Arai T; Yagasaki M
    Biosci Biotechnol Biochem; 2009 Apr; 73(4):901-7. PubMed ID: 19352016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.