These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Synthesis, characterization and biocompatibility of polypyrrole/Cu(II) metal-organic framework nanocomposites. Neisi Z; Ansari-Asl Z; Jafarinejad-Farsangi S; Tarzi ME; Sedaghat T; Nobakht V Colloids Surf B Biointerfaces; 2019 Jun; 178():365-376. PubMed ID: 30903975 [TBL] [Abstract][Full Text] [Related]
5. Fabrication of chitosan-coated porous polycaprolactone/strontium-substituted bioactive glass nanocomposite scaffold for bone tissue engineering. Shaltooki M; Dini G; Mehdikhani M Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110138. PubMed ID: 31546409 [TBL] [Abstract][Full Text] [Related]
6. [Effects and mechanisms of polycaprolactone-cellulose acetate nanofiber scaffold loaded with rat epidermal stem cells on wound healing of full-thickness skin defects in rats]. Lin ZX; Zhang YH; Huang R; Li XY Zhonghua Shao Shang Za Zhi; 2021 May; 37(5):460-468. PubMed ID: 33894697 [No Abstract] [Full Text] [Related]
7. Acceleration of dermal wound healing by using electrospun curcumin-loaded poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) fibrous mats. Fu SZ; Meng XH; Fan J; Yang LL; Wen QL; Ye SJ; Lin S; Wang BQ; Chen LL; Wu JB; Chen Y; Fan JM; Li Z J Biomed Mater Res B Appl Biomater; 2014 Apr; 102(3):533-42. PubMed ID: 24115465 [TBL] [Abstract][Full Text] [Related]
8. Encapsulation of curcumin loaded chitosan nanoparticle within poly (ε-caprolactone) and gelatin fiber mat for wound healing and layered dermal reconstitution. Zahiri M; Khanmohammadi M; Goodarzi A; Ababzadeh S; Sagharjoghi Farahani M; Mohandesnezhad S; Bahrami N; Nabipour I; Ai J Int J Biol Macromol; 2020 Jun; 153():1241-1250. PubMed ID: 31759002 [TBL] [Abstract][Full Text] [Related]
9. Curcumin-regulated constructing of defective zinc-based polymer-metal-organic framework as long-acting antibacterial platform for efficient wound healing. Yan F; Cheng F; Guo C; Liang G; Zhang S; Fang S; Zhang Z J Colloid Interface Sci; 2023 Jul; 641():59-69. PubMed ID: 36924546 [TBL] [Abstract][Full Text] [Related]
10. In vitro study of hydroxyapatite/polycaprolactone (HA/PCL) nanocomposite synthesized by an in situ sol-gel process. Rezaei A; Mohammadi MR Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):390-6. PubMed ID: 25428086 [TBL] [Abstract][Full Text] [Related]
11. Bioactive anti-oxidative polycaprolactone/gelatin electrospun nanofibers containing selenium nanoparticles/vitamin E for wound dressing applications. Doostmohammadi M; Forootanfar H; Shakibaie M; Torkzadeh-Mahani M; Rahimi HR; Jafari E; Ameri A; Amirheidari B J Biomater Appl; 2021 Aug; 36(2):193-209. PubMed ID: 33722085 [TBL] [Abstract][Full Text] [Related]
12. Fabrication and characterization of PCL/zein/gum arabic electrospun nanocomposite scaffold for skin tissue engineering. Pedram Rad Z; Mokhtari J; Abbasi M Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():356-366. PubMed ID: 30274067 [TBL] [Abstract][Full Text] [Related]
13. 3D-printed MgO nanoparticle loaded polycaprolactone β-tricalcium phosphate composite scaffold for bone tissue engineering applications: In-vitro and in-vivo evaluation. Safiaghdam H; Nokhbatolfoghahaei H; Farzad-Mohajeri S; Dehghan MM; Farajpour H; Aminianfar H; Bakhtiari Z; Jabbari Fakhr M; Hosseinzadeh S; Khojasteh A J Biomed Mater Res A; 2023 Mar; 111(3):322-339. PubMed ID: 36334300 [TBL] [Abstract][Full Text] [Related]
14. Fabrication and Characterization of Zn Particle Incorporated Fibrous Scaffolds for Potential Application in Tissue Healing and Regeneration. Tettey F; Saudi S; Davies D; Shrestha S; Johnson K; Fialkova S; Subedi K; Bastakoti BP; Sankar J; Desai S; Bhattarai N ACS Appl Mater Interfaces; 2023 Oct; 15(42):48913-48929. PubMed ID: 37847523 [TBL] [Abstract][Full Text] [Related]
15. Polycaprolactone fibrous electrospun scaffolds reinforced with copper doped wollastonite for bone tissue engineering applications. Abudhahir M; Saleem A; Paramita P; Kumar SD; Tze-Wen C; Selvamurugan N; Moorthi A J Biomed Mater Res B Appl Biomater; 2021 May; 109(5):654-664. PubMed ID: 32935919 [TBL] [Abstract][Full Text] [Related]
16. Development of Drug-Loaded PCL@MOF Film Enclosed in a Photo Polymeric Container for Sustained Release. Shukla S; Joshi NN; Kadian S; Narayan RJ ACS Appl Bio Mater; 2024 Aug; 7(8):5382-5396. PubMed ID: 38992948 [TBL] [Abstract][Full Text] [Related]
17. Biological and structural properties of graphene oxide/curcumin nanocomposite incorporated chitosan as a scaffold for wound healing application. Nowroozi N; Faraji S; Nouralishahi A; Shahrousvand M Life Sci; 2021 Jan; 264():118640. PubMed ID: 33172598 [TBL] [Abstract][Full Text] [Related]
18. Electrospinning of Scaffolds from the Polycaprolactone/Polyurethane Composite with Graphene Oxide for Skin Tissue Engineering. Sadeghianmaryan A; Karimi Y; Naghieh S; Alizadeh Sardroud H; Gorji M; Chen X Appl Biochem Biotechnol; 2020 Jun; 191(2):567-578. PubMed ID: 31823274 [TBL] [Abstract][Full Text] [Related]
19. Solvent-free polymer/bioceramic scaffolds for bone tissue engineering: fabrication, analysis, and cell growth. Minton J; Janney C; Akbarzadeh R; Focke C; Subramanian A; Smith T; McKinney J; Liu J; Schmitz J; James PF; Yousefi AM J Biomater Sci Polym Ed; 2014; 25(16):1856-74. PubMed ID: 25178801 [TBL] [Abstract][Full Text] [Related]
20. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]