These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 36689176)

  • 1. MicroRNA Detection at Femtomolar Concentrations with Isothermal Amplification and a Biological Nanopore.
    Takiguchi S; Kawano R
    Methods Mol Biol; 2023; 2630():67-74. PubMed ID: 36689176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MicroRNA detection at femtomolar concentrations with isothermal amplification and a biological nanopore.
    Zhang H; Hiratani M; Nagaoka K; Kawano R
    Nanoscale; 2017 Nov; 9(42):16124-16127. PubMed ID: 29043339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanopore biosensor for sensitive and label-free nucleic acid detection based on hybridization chain reaction amplification.
    Zhao T; Zhang HS; Tang H; Jiang JH
    Talanta; 2017 Dec; 175():121-126. PubMed ID: 28841968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amplification and Quantification of an Antisense Oligonucleotide from Target microRNA Using Programmable DNA and a Biological Nanopore.
    Hiratani M; Ohara M; Kawano R
    Anal Chem; 2017 Feb; 89(4):2312-2317. PubMed ID: 28192937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functionalized nanopores based on hybridization chain reaction: Fabrication and microRNA sensing.
    Qiu X; Dong J; Dai Q; Huang M; Li Y
    Biosens Bioelectron; 2023 Nov; 240():115594. PubMed ID: 37660458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loop-Mediated Isothermal Amplification-Coupled Glass Nanopore Counting Toward Sensitive and Specific Nucleic Acid Testing.
    Tang Z; Choi G; Nouri R; Guan W
    Nano Lett; 2019 Nov; 19(11):7927-7934. PubMed ID: 31657939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitation of MicroRNA-155 in Human Cells by Heterogeneous Enzyme-Linked Oligonucleotide Assay Coupled with Mismatched Catalytic Hairpin Assembly Reaction.
    Bodulev OL; Galkin II; Zhao S; Pletyushkina OY; Sakharov IY
    Biosensors (Basel); 2022 Jul; 12(8):. PubMed ID: 35892467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isothermal circular strand displacement-based assay for microRNA detection in liquid biopsy.
    Bellassai N; D'Agata R; Spoto G
    Anal Bioanal Chem; 2022 Sep; 414(22):6431-6440. PubMed ID: 35879425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emerging isothermal amplification technologies for microRNA biosensing: Applications to liquid biopsies.
    Gines G; Menezes R; Xiao W; Rondelez Y; Taly V
    Mol Aspects Med; 2020 Apr; 72():100832. PubMed ID: 31767382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simple, colorimetric detection of microRNA based on target amplification and DNAzyme.
    Yan C; Jiang C; Jiang J; Yu R
    Anal Sci; 2013; 29(6):605-10. PubMed ID: 23749125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Target-triggered triple isothermal cascade amplification strategy for ultrasensitive microRNA-21 detection at sub-attomole level.
    Cheng FF; Jiang N; Li X; Zhang L; Hu L; Chen X; Jiang LP; Abdel-Halim ES; Zhu JJ
    Biosens Bioelectron; 2016 Nov; 85():891-896. PubMed ID: 27311114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances of nanopore-based sensing techniques for contaminants evaluation of food and agricultural products.
    Tan X; Lv C; Chen H
    Crit Rev Food Sci Nutr; 2023; 63(31):10866-10879. PubMed ID: 35687354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly sensitive MicroRNA 146a detection using a gold nanoparticle-based CTG repeat probing system and isothermal amplification.
    Le BH; Seo YJ
    Anal Chim Acta; 2018 Jan; 999():155-160. PubMed ID: 29254567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lighting Up Fluorescent Silver Clusters via Target-Catalyzed Hairpin Assembly for Amplified Biosensing.
    Pan M; Liang M; Sun J; Liu X; Wang F
    Langmuir; 2018 Dec; 34(49):14851-14857. PubMed ID: 30044098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Target-triggered cascade recycling amplification for label-free detection of microRNA and molecular logic operations.
    Bi S; Ye J; Dong Y; Li H; Cao W
    Chem Commun (Camb); 2016 Jan; 52(2):402-5. PubMed ID: 26525041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Digital quantification of rolling circle amplified single DNA molecules in a resistive pulse sensing nanopore.
    Kühnemund M; Nilsson M
    Biosens Bioelectron; 2015 May; 67():11-7. PubMed ID: 25000851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversing current rectification to improve DNA-sensing sensitivity in conical nanopores.
    Cai XH; Cao SH; Cai SL; Wu YY; Ajmal M; Li YQ
    Electrophoresis; 2019 Aug; 40(16-17):2098-2103. PubMed ID: 31020667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoelectrochemical biosensor for microRNA detection based on multiple amplification strategies.
    Wang M; Yin H; Zhou Y; Han J; He T; Cui L; Ai S
    Mikrochim Acta; 2018 Apr; 185(5):257. PubMed ID: 29679252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitive and rapid detection of microRNAs using hairpin probes-mediated exponential isothermal amplification.
    Liu H; Tian T; Zhang Y; Ding L; Yu J; Yan M
    Biosens Bioelectron; 2017 Mar; 89(Pt 2):710-714. PubMed ID: 27865105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanopore-Based Fingerprint Immunoassay Based on Rolling Circle Amplification and DNA Fragmentation.
    Kang X; Wu C; Alibakhshi MA; Liu X; Yu L; Walt DR; Wanunu M
    ACS Nano; 2023 Mar; 17(6):5412-5420. PubMed ID: 36877993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.