These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 36689603)

  • 41. Skeletal muscle oxygenation during incremental exercise.
    Shibuya K; Tanaka J
    Arch Physiol Biochem; 2003 Dec; 111(5):475-8. PubMed ID: 16026037
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Skeletal muscle V̇o
    Zuccarelli L; do Nascimento Salvador PC; Del Torto A; Fiorentino R; Grassi B
    J Appl Physiol (1985); 2020 Mar; 128(3):534-544. PubMed ID: 31971475
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reliability of muscle blood flow and oxygen consumption response from exercise using near-infrared spectroscopy.
    Lucero AA; Addae G; Lawrence W; Neway B; Credeur DP; Faulkner J; Rowlands D; Stoner L
    Exp Physiol; 2018 Jan; 103(1):90-100. PubMed ID: 29034529
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantifying leg muscle deoxygenation during incremental cycling in hypoxemic patients with fibrotic interstitial lung disease.
    Marillier M; Bernard AC; Verges S; Moran-Mendoza O; Neder JA
    Clin Physiol Funct Imaging; 2023 May; 43(3):192-200. PubMed ID: 36582169
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of blood flow restriction duration on muscle activation and microvascular oxygenation during low-volume isometric exercise.
    Cayot TE; Lauver JD; Silette CR; Scheuermann BW
    Clin Physiol Funct Imaging; 2016 Jul; 36(4):298-305. PubMed ID: 25564998
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of acute hypoxia on cerebral and muscle oxygenation during incremental exercise.
    Subudhi AW; Dimmen AC; Roach RC
    J Appl Physiol (1985); 2007 Jul; 103(1):177-83. PubMed ID: 17431082
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Muscle mitochondrial capacity in high- and low-fitness females using near-infrared spectroscopy.
    Lagerwaard B; Janssen JJE; Cuijpers I; Keijer J; de Boer VCJ; Nieuwenhuizen AG
    Physiol Rep; 2021 May; 9(9):e14838. PubMed ID: 33991439
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reference values for triceps surae tissue oxygen saturation by near-infrared spectroscopy.
    Faria VC; Oliveira LFL; Ferreira AP; Cunha TEO; Fernandes JSA; Pussieldi GA; Pereira DAG
    Physiol Meas; 2022 Oct; 43(10):. PubMed ID: 36137541
    [No Abstract]   [Full Text] [Related]  

  • 49. Long-lasting exercise involvement protects against decline in
    Zubac D; Ivančev V; Valić Z; Šimunič B
    Appl Physiol Nutr Metab; 2021 Feb; 46(2):108-116. PubMed ID: 32640173
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Performance comparison of the MOXY and PortaMon near-infrared spectroscopy muscle oximeters at rest and during exercise.
    McManus CJ; Collison J; Cooper CE
    J Biomed Opt; 2018 Jan; 23(1):1-14. PubMed ID: 29368457
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Muscle Oxidative Capacity
    Possamai LT; de Aguiar RA; Borszcz FK; do Nascimento Salvador PC; de Lucas RD; Turnes T
    Res Q Exerc Sport; 2023 Dec; 94(4):1020-1027. PubMed ID: 36048498
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Near-infrared spectroscopy technique to evaluate the effects of red blood cell transfusion on tissue oxygenation.
    Creteur J; Neves AP; Vincent JL
    Crit Care; 2009; 13 Suppl 5(Suppl 5):S11. PubMed ID: 19951383
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hemodynamic and oxidative mechanisms of tourniquet-induced muscle injury: near-infrared spectroscopy for the orthopedics setting.
    Shadgan B; Reid WD; Harris RL; Jafari S; Powers SK; O'Brien PJ
    J Biomed Opt; 2012 Aug; 17(8):081408-1. PubMed ID: 23224169
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Studies into the determinants of skeletal muscle oxygen consumption: novel insight from near-infrared diffuse correlation spectroscopy.
    Tucker WJ; Rosenberry R; Trojacek D; Chamseddine HH; Arena-Marshall CA; Zhu Y; Wang J; Kellawan JM; Haykowsky MJ; Tian F; Nelson MD
    J Physiol; 2019 Jun; 597(11):2887-2901. PubMed ID: 30982990
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Using a Portable Near-infrared Spectroscopy Device to Estimate The Second Ventilatory Threshold.
    Rodrigo-Carranza V; González-Mohíno F; Turner AP; Rodriguez-Barbero S; González-Ravé JM
    Int J Sports Med; 2021 Sep; 42(10):905-910. PubMed ID: 33525000
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sex Differences in Test-Retest Reliability of Near-Infrared Spectroscopy During Postocclusive Reactive Hyperemia of the Vastus Lateralis.
    Shoemaker ME; Smith CM; Gillen ZM; Cramer JT
    J Strength Cond Res; 2024 Feb; 38(2):e40-e48. PubMed ID: 37815266
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Changes in whole tissue heme concentration dissociates muscle deoxygenation from muscle oxygen extraction during passive head-up tilt.
    Adami A; Koga S; Kondo N; Cannon DT; Kowalchuk JM; Amano T; Rossiter HB
    J Appl Physiol (1985); 2015 May; 118(9):1091-9. PubMed ID: 25678700
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of differential muscle activation patterns on muscle deoxygenation and microvascular haemoglobin regulation.
    Okushima D; Poole DC; Barstow TJ; Kondo N; Chin LMK; Koga S
    Exp Physiol; 2020 Mar; 105(3):531-541. PubMed ID: 31944446
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Respiratory muscle deoxygenation and ventilatory threshold assessments using near infrared spectroscopy in children.
    Moalla W; Dupont G; Berthoin S; Ahmaidi S
    Int J Sports Med; 2005 Sep; 26(7):576-82. PubMed ID: 16195992
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reduced Optical Path Length in the Vastus Lateralis During Ramp Cycling Exercise.
    Endo T; Kime R; Watanabe T; Fuse S; Murase N; Kurosawa Y; Hamaoka T
    Adv Exp Med Biol; 2020; 1232():239-244. PubMed ID: 31893416
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.