These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36689914)

  • 21. In Vivo Penetrating Microelectrodes for Brain Electrophysiology.
    Erofeev A; Antifeev I; Bolshakova A; Bezprozvanny I; Vlasova O
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501805
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrochemical microelectrode degradation monitoring:
    Doering M; Kieninger J; Urban GA; Weltin A
    J Neural Eng; 2022 Jan; 19(1):. PubMed ID: 34983028
    [No Abstract]   [Full Text] [Related]  

  • 23. Effects of adsorbed proteins, an antifouling agent and long-duration DC voltage pulses on the impedance of silicon-based neural microelectrodes.
    Sommakia S; Rickus JL; Otto KJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():7139-42. PubMed ID: 19963693
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advancements in Brain Research: The In Vivo/In Vitro Electrochemical Detection of Neurochemicals.
    Xu X; Zuo Y; Chen S; Hatami A; Gu H
    Biosensors (Basel); 2024 Feb; 14(3):. PubMed ID: 38534232
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thinking Small: Progress on Microscale Neurostimulation Technology.
    Pancrazio JJ; Deku F; Ghazavi A; Stiller AM; Rihani R; Frewin CL; Varner VD; Gardner TJ; Cogan SF
    Neuromodulation; 2017 Dec; 20(8):745-752. PubMed ID: 29076214
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrode-Electrolyte Interface Impedance Characterization of Ultra-Miniaturized Microelectrode Arrays Over Materials and Geometries for Sub-Cellular and Cellular Sensing and Stimulation.
    Wang A; Jung D; Park J; Junek G; Wang H
    IEEE Trans Nanobioscience; 2019 Apr; 18(2):248-252. PubMed ID: 30892229
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct electrodeposition of Graphene enhanced conductive polymer on microelectrode for biosensing application.
    Wang MH; Ji BW; Gu XW; Tian HC; Kang XY; Yang B; Wang XL; Chen X; Li CY; Liu JQ
    Biosens Bioelectron; 2018 Jan; 99():99-107. PubMed ID: 28743085
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimization of microelectrode design for cortical recording based on thermal noise considerations.
    Lempka SF; Johnson MD; Barnett DW; Moffitt MA; Otto KJ; Kipke DR; McIntyre CC
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3361-4. PubMed ID: 17947023
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polydopamine-doped conductive polymer microelectrodes for neural recording and stimulation.
    Kim R; Nam Y
    J Neurosci Methods; 2019 Oct; 326():108369. PubMed ID: 31326604
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New life for old wires: electrochemical sensor method for neural implants.
    Weltin A; Ganatra D; König K; Joseph K; Hofmann UG; Urban GA; Kieninger J
    J Neural Eng; 2019 Dec; 17(1):016007. PubMed ID: 31597122
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of microelectrode materials for direct-current electrocorticography.
    Li C; Narayan RK; Wu PM; Rajan N; Wu Z; Mehan N; Golanov EV; Ahn CH; Hartings JA
    J Neural Eng; 2016 Feb; 13(1):016008. PubMed ID: 26655565
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Implantable intracortical microelectrodes: reviewing the present with a focus on the future.
    Wang Y; Yang X; Zhang X; Wang Y; Pei W
    Microsyst Nanoeng; 2023; 9():7. PubMed ID: 36620394
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carbon-Fiber Based Microelectrode Array Embedded with a Biodegradable Silk Support for In Vivo Neural Recording.
    Lee Y; Kong C; Chang JW; Jun SB
    J Korean Med Sci; 2019 Jan; 34(4):e24. PubMed ID: 30686948
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Editors' Choice-Review-The Future of Carbon-Based Neurochemical Sensing: A Critical Perspective.
    Ostertag BJ; Ross AE
    ECS Sens Plus; 2023 Dec; 2(4):043601. PubMed ID: 38170109
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microfabrication, characterization and in vivo MRI compatibility of diamond microelectrodes array for neural interfacing.
    Hébert C; Warnking J; Depaulis A; Garçon LA; Mermoux M; Eon D; Mailley P; Omnès F
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():25-31. PubMed ID: 25491956
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Toward a comparison of microelectrodes for acute and chronic recordings.
    Ward MP; Rajdev P; Ellison C; Irazoqui PP
    Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Au Hierarchical Nanostructure-Based Surface Modification of Microelectrodes for Improved Neural Signal Recording.
    Woo H; Kim S; Nam H; Choi W; Shin K; Kim K; Yoon S; Kim GH; Kim J; Lim G
    Anal Chem; 2021 Aug; 93(34):11765-11774. PubMed ID: 34387479
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Long-term deep intracerebral microelectrode recordings in patients with drug-resistant epilepsy: Proposed guidelines based on 10-year experience.
    Lehongre K; Lambrecq V; Whitmarsh S; Frazzini V; Cousyn L; Soleil D; Fernandez-Vidal S; Mathon B; Houot M; Lemaréchal JD; Clemenceau S; Hasboun D; Adam C; Navarro V
    Neuroimage; 2022 Jul; 254():119116. PubMed ID: 35318150
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication and characterization of polyimide-based 'smooth' titanium nitride microelectrode arrays for neural stimulation and recording.
    Rodrigues F; Ribeiro JF; Anacleto PA; Fouchard A; David O; Sarro PM; Mendes PM
    J Neural Eng; 2019 Dec; 17(1):016010. PubMed ID: 31614339
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.