BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36690099)

  • 1. Characterizing drought events occurred in the Yangtze River Basin from 1979 to 2017 by reconstructing water storage anomalies based on GRACE and meteorological data.
    Zheng S; Zhang Z; Yan H; Zhao Y; Li Z
    Sci Total Environ; 2023 Apr; 868():161755. PubMed ID: 36690099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deep learning model for reconstructing centenary water storage changes in the Yangtze River Basin.
    Wang J; Shen Y; Awange JL; Yang L
    Sci Total Environ; 2023 Dec; 905():167030. PubMed ID: 37704127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Divergent spatiotemporal variability of terrestrial water storage and eight hydroclimatic components over three different scales of the Yangtze River basin.
    Chao N; Li F; Yu N; Chen G; Wang Z; Ouyang G; Yeh PJ
    Sci Total Environ; 2023 Jun; 879():162886. PubMed ID: 36933709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstructing a long-term water storage-based drought index in the Yangtze River Basin.
    Zhong Y; Hu E; Wu Y; An Q; Wang C; Bai H; Gao W
    Sci Total Environ; 2023 Jul; 883():163403. PubMed ID: 37059147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstruction of GRACE terrestrial water storage anomalies using Multi-Layer Perceptrons for South Indian River basins.
    Satish Kumar K; AnandRaj P; Sreelatha K; Sridhar V
    Sci Total Environ; 2023 Jan; 857(Pt 2):159289. PubMed ID: 36209880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tracking seasonal and monthly drought with GRACE-based terrestrial water storage assessments over major river basins in South India.
    Satish Kumar K; Venkata Rathnam E; Sridhar V
    Sci Total Environ; 2021 Apr; 763():142994. PubMed ID: 33129527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drought characterization over Indian sub-continent using GRACE-based indices.
    Rawat S; Ganapathy A; Agarwal A
    Sci Rep; 2022 Sep; 12(1):15432. PubMed ID: 36104454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of extreme hydrological droughts in the poyang lake basin during 2021-2022 using GNSS-derived daily terrestrial water storage anomalies.
    Peng Y; Chen G; Chao N; Wang Z; Wu T; Luo X
    Sci Total Environ; 2024 Apr; 919():170875. PubMed ID: 38360307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drought evaluation using the GRACE terrestrial water storage deficit over the Yangtze River Basin, China.
    Sun Z; Zhu X; Pan Y; Zhang J; Liu X
    Sci Total Environ; 2018 Sep; 634():727-738. PubMed ID: 29649717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water Level Reconstruction and Prediction Based on Space-Borne Sensors: A Case Study in the Mekong and Yangtze River Basins.
    He Q; Fok HS; Chen Q; Chun KP
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30217044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of different GRACE solutions in terrestrial water storage trend estimation over Tibetan Plateau.
    Jing W; Zhang P; Zhao X
    Sci Rep; 2019 Feb; 9(1):1765. PubMed ID: 30741984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using GRACE satellite observations for separating meteorological variability from anthropogenic impacts on water availability.
    Hosseini-Moghari SM; Araghinejad S; Ebrahimi K; Tang Q; AghaKouchak A
    Sci Rep; 2020 Sep; 10(1):15098. PubMed ID: 32934248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring the spatiotemporal terrestrial water storage changes in the Yarlung Zangbo River Basin by applying the P-LSA and EOF methods to GRACE data.
    Zhang H; Zhang LL; Li J; An RD; Deng Y
    Sci Total Environ; 2020 Apr; 713():136274. PubMed ID: 32019005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overview of terrestrial water storage changes over the Indus River Basin based on GRACE/GRACE-FO solutions.
    Zhu Y; Liu S; Yi Y; Xie F; Grünwald R; Miao W; Wu K; Qi M; Gao Y; Singh D
    Sci Total Environ; 2021 Dec; 799():149366. PubMed ID: 34352463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bridging the gap between GRACE and GRACE-FO missions with deep learning aided water storage simulations.
    Uz M; Atman KG; Akyilmaz O; Shum CK; Keleş M; Ay T; Tandoğdu B; Zhang Y; Mercan H
    Sci Total Environ; 2022 Jul; 830():154701. PubMed ID: 35337878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bridging Terrestrial Water Storage Anomaly During GRACE/GRACE-FO Gap Using SSA Method: A Case Study in China.
    Li W; Wang W; Zhang C; Wen H; Zhong Y; Zhu Y; Li Z
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31554328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comprehensive drought monitoring method integrating multi-source data.
    Shi X; Ding H; Wu M; Shi M; Chen F; Li Y; Yang Y
    PeerJ; 2022; 10():e13560. PubMed ID: 35811819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Influence of Climate Change on Droughts and Floods in the Yangtze River Basin from 2003 to 2020.
    Cui L; He M; Zou Z; Yao C; Wang S; An J; Wang X
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatiotemporal distribution of groundwater drought using GRACE-based satellite estimates: a case study of Lower Gangetic Basin, India.
    Nandi S; Biswas S
    Environ Monit Assess; 2024 Jan; 196(2):151. PubMed ID: 38225529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Projected changes in terrestrial water storage and associated flood potential across the Yangtze River basin.
    Xiong J; Guo S; Yin J; Ning Z; Zeng Z; Wang R
    Sci Total Environ; 2022 Apr; 817():152998. PubMed ID: 35031376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.