These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 36690117)
1. Evolution and prediction of drought-flood abrupt alternation events in Huang-Huai-Hai River Basin, China. Ren J; Wang W; Wei J; Li H; Li X; Liu G; Chen Y; Ye S Sci Total Environ; 2023 Apr; 869():161707. PubMed ID: 36690117 [TBL] [Abstract][Full Text] [Related]
2. Spatial Distribution of Precipitation in Huang-Huai-Hai River Basin between 1961 to 2016, China. Yuan Y; Yan D; Yuan Z; Yin J; Zhao Z Int J Environ Res Public Health; 2019 Sep; 16(18):. PubMed ID: 31540280 [TBL] [Abstract][Full Text] [Related]
3. Substantial increase in abrupt shifts between drought and flood events in China based on observations and model simulations. Zhang Y; You Q; Ullah S; Chen C; Shen L; Liu Z Sci Total Environ; 2023 Jun; 876():162822. PubMed ID: 36921874 [TBL] [Abstract][Full Text] [Related]
4. Drought-flood abrupt alteration events over China. Bi W; Li M; Weng B; Yan D; Dong Z; Feng J; Wang H Sci Total Environ; 2023 Jun; 875():162529. PubMed ID: 36870496 [TBL] [Abstract][Full Text] [Related]
5. Spatial-temporal variation of extreme precipitation in the Yellow-Huai-Hai-Yangtze Basin of China. Wang L; Wang J; He F; Wang Q; Zhao Y; Lu P; Huang Y; Cui H; Deng H; Jia X Sci Rep; 2023 Jun; 13(1):9312. PubMed ID: 37291240 [TBL] [Abstract][Full Text] [Related]
6. Evolution of Drought⁻Flood Abrupt Alternation and Its Impacts on Surface Water Quality from 2020 to 2050 in the Luanhe River Basin. Bi W; Weng B; Yuan Z; Yang Y; Xu T; Yan D; Ma J Int J Environ Res Public Health; 2019 Feb; 16(5):. PubMed ID: 30813626 [TBL] [Abstract][Full Text] [Related]
7. The role of large reservoirs in drought and flood disaster risk mitigation: A case of the Yellow River Basin. Feng J; Qin T; Yan D; Lv X; Yan D; Zhang X; Li W Sci Total Environ; 2024 Nov; 949():175255. PubMed ID: 39102956 [TBL] [Abstract][Full Text] [Related]
8. Assessing and Predicting the Water Resources Vulnerability under Various Climate-Change Scenarios: A Case Study of Huang-Huai-Hai River Basin, China. Chen Y; Feng Y; Zhang F; Yang F; Wang L Entropy (Basel); 2020 Mar; 22(3):. PubMed ID: 33286107 [TBL] [Abstract][Full Text] [Related]
9. Impacts of climate change and anthropogenic stressors on runoff variations in major river basins in China since 1950. Bai X; Zhao W Sci Total Environ; 2023 Nov; 898():165349. PubMed ID: 37419363 [TBL] [Abstract][Full Text] [Related]
10. Responses of Phosphate-Solubilizing Microorganisms Mediated Phosphorus Cycling to Drought-Flood Abrupt Alternation in Summer Maize Field Soil. Bi W; Weng B; Yan D; Wang H; Wang M; Yan S; Jing L; Liu T; Chang W Front Microbiol; 2021; 12():768921. PubMed ID: 35111138 [TBL] [Abstract][Full Text] [Related]
11. Comprehensive climatic suitability evaluation of peanut in Huang-Huai-Hai region under the background of climate change. Wei S; Li K; Yang Y; Wang C; Liu C; Zhang J Sci Rep; 2022 Jul; 12(1):11350. PubMed ID: 35790844 [TBL] [Abstract][Full Text] [Related]
12. A comprehensive drought monitoring method integrating multi-source data. Shi X; Ding H; Wu M; Shi M; Chen F; Li Y; Yang Y PeerJ; 2022; 10():e13560. PubMed ID: 35811819 [TBL] [Abstract][Full Text] [Related]
13. Projected changes in temperature, precipitation and potential evapotranspiration across Indus River Basin at 1.5-3.0 °C warming levels using CMIP6-GCMs. Mondal SK; Tao H; Huang J; Wang Y; Su B; Zhai J; Jing C; Wen S; Jiang S; Chen Z; Jiang T Sci Total Environ; 2021 Oct; 789():147867. PubMed ID: 34052498 [TBL] [Abstract][Full Text] [Related]
14. Risk assessment of drought disaster in summer maize cultivated areas of the Huang-Huai-Hai plain, eastern China. Hu Z; Wu Z; Zhang Y; Li Q; Islam ARMT; Pan C Environ Monit Assess; 2021 Jun; 193(7):441. PubMed ID: 34165640 [TBL] [Abstract][Full Text] [Related]
15. Assessing and mapping human well-being for sustainable development amid drought and flood hazards: Dadu River Basin of China. Zhang Y; Ya X; Wang R; Zou Y; Dong X Environ Sci Pollut Res Int; 2022 Dec; 29(60):90719-90737. PubMed ID: 35876996 [TBL] [Abstract][Full Text] [Related]
16. Insights from CMIP6 SSP scenarios for future characteristics of propagation from meteorological drought to hydrological drought in the Pearl River Basin. Zhou Z; Ding Y; Fu Q; Wang C; Wang Y; Cai H; Liu S; Huang S; Shi H Sci Total Environ; 2023 Nov; 899():165618. PubMed ID: 37474042 [TBL] [Abstract][Full Text] [Related]
17. A comprehensively quantitative method of evaluating the impact of drought on crop yield using daily multi-scale SPEI and crop growth process model. Wang Q; Wu J; Li X; Zhou H; Yang J; Geng G; An X; Liu L; Tang Z Int J Biometeorol; 2017 Apr; 61(4):685-699. PubMed ID: 27888338 [TBL] [Abstract][Full Text] [Related]
18. Climate change multi-model projections in CMIP6 scenarios in Central Hokkaido, Japan. Peng S; Wang C; Li Z; Mihara K; Kuramochi K; Toma Y; Hatano R Sci Rep; 2023 Jan; 13(1):230. PubMed ID: 36604582 [TBL] [Abstract][Full Text] [Related]
19. Application of relative importance metrics for CMIP6 models selection in projecting basin-scale rainfall over Johor River basin, Malaysia. Sa'adi Z; Alias NE; Yusop Z; Iqbal Z; Houmsi MR; Houmsi LN; Ramli MWA; Muhammad MKI Sci Total Environ; 2024 Feb; 912():169187. PubMed ID: 38097068 [TBL] [Abstract][Full Text] [Related]
20. Spatio-Temporal Variations in Groundwater Revealed by GRACE and Its Driving Factors in the Huang-Huai-Hai Plain, China. Su Y; Guo B; Zhou Z; Zhong Y; Min L Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32050517 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]