BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 36690344)

  • 1. The escape of CRISPR-mediated gene editing in Zymomonas mobilis.
    Chen M; Huang Y; Zheng Y; Wu B; He M
    FEMS Microbiol Lett; 2023 Jan; 370():. PubMed ID: 36690344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Establishment and application of a CRISPR-Cas12a assisted genome-editing system in Zymomonas mobilis.
    Shen W; Zhang J; Geng B; Qiu M; Hu M; Yang Q; Bao W; Xiao Y; Zheng Y; Peng W; Zhang G; Ma L; Yang S
    Microb Cell Fact; 2019 Oct; 18(1):162. PubMed ID: 31581942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using the CRISPR/Cas9 system to eliminate native plasmids of Zymomonas mobilis ZM4.
    Cao QH; Shao HH; Qiu H; Li T; Zhang YZ; Tan XM
    Biosci Biotechnol Biochem; 2017 Mar; 81(3):453-459. PubMed ID: 27900888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elimination of editing plasmid mediated by theophylline riboswitch in Zymomonas mobilis.
    Huang Y; Chen M; Hu G; Wu B; He M
    Appl Microbiol Biotechnol; 2023 Dec; 107(23):7151-7163. PubMed ID: 37728624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a counterselectable system for rapid and efficient CRISPR-based genome engineering in Zymomonas mobilis.
    Zheng Y; Fu H; Chen J; Li J; Bian Y; Hu P; Lei L; Liu Y; Yang J; Peng W
    Microb Cell Fact; 2023 Oct; 22(1):208. PubMed ID: 37833755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR-mediated host genomic DNA damage is efficiently repaired through microhomology-mediated end joining in Zymomonas mobilis.
    Wang X; Wu B; Sui X; Zhang Z; Liu T; Li Y; Hu G; He M; Peng N
    J Genet Genomics; 2021 Feb; 48(2):115-122. PubMed ID: 33958317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A High-Efficacy CRISPR Interference System for Gene Function Discovery in Zymomonas mobilis.
    Banta AB; Enright AL; Siletti C; Peters JM
    Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32978126
    [No Abstract]   [Full Text] [Related]  

  • 8. Characterization and repurposing of the endogenous Type I-F CRISPR-Cas system of Zymomonas mobilis for genome engineering.
    Zheng Y; Han J; Wang B; Hu X; Li R; Shen W; Ma X; Ma L; Yi L; Yang S; Peng W
    Nucleic Acids Res; 2019 Dec; 47(21):11461-11475. PubMed ID: 31647102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR-dCas9 Mediated Cytosine Deaminase Base Editing in
    Yu S; Price MA; Wang Y; Liu Y; Guo Y; Ni X; Rosser SJ; Bi C; Wang M
    ACS Synth Biol; 2020 Jul; 9(7):1781-1789. PubMed ID: 32551562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Harnessing the native type I-B CRISPR-Cas for genome editing in a polyploid archaeon.
    Cheng F; Gong L; Zhao D; Yang H; Zhou J; Li M; Xiang H
    J Genet Genomics; 2017 Nov; 44(11):541-548. PubMed ID: 29169919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two Distinct Approaches for CRISPR-Cas9-Mediated Gene Editing in Cryptococcus neoformans and Related Species.
    Wang P
    mSphere; 2018 Jun; 3(3):. PubMed ID: 29898980
    [No Abstract]   [Full Text] [Related]  

  • 12. Can genetic engineering-based methods for gene function identification be eclipsed by genome editing in plants? A comparison of methodologies.
    Amritha PP; Shah JM
    Mol Genet Genomics; 2021 May; 296(3):485-500. PubMed ID: 33751237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endogenous CRISPR-assisted microhomology-mediated end joining enables rapid genome editing in Zymomonas mobilis.
    Sui X; Wang X; Liu T; Ye Q; Wu B; Hu G; Yang S; He M; Peng N
    Biotechnol Biofuels; 2021 Oct; 14(1):208. PubMed ID: 34689795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Introduced RNA-Only Approach for Plasmid Curing via the CRISPR-Cpf1 System in
    Chen BC; Chen YZ; Lin HY
    Biomolecules; 2023 Oct; 13(10):. PubMed ID: 37892243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an efficient iterative genome editing method in Bacillus subtilis using the CRISPR-AsCpf1 system.
    Zhao X; Chen X; Xue Y; Wang X
    J Basic Microbiol; 2022 Jul; 62(7):824-832. PubMed ID: 35655368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a fast and easy method for Escherichia coli genome editing with CRISPR/Cas9.
    Zhao D; Yuan S; Xiong B; Sun H; Ye L; Li J; Zhang X; Bi C
    Microb Cell Fact; 2016 Dec; 15(1):205. PubMed ID: 27908280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a CRISPR/Cas9 System for Methylococcus capsulatus
    Tapscott T; Guarnieri MT; Henard CA
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30926729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research].
    Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB
    Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas9 System and its Research Progress in Gene Therapy.
    Liu W; Yang C; Liu Y; Jiang G
    Anticancer Agents Med Chem; 2019; 19(16):1912-1919. PubMed ID: 31633477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR-Cas9-mediated genome editing in apple and grapevine.
    Osakabe Y; Liang Z; Ren C; Nishitani C; Osakabe K; Wada M; Komori S; Malnoy M; Velasco R; Poli M; Jung MH; Koo OJ; Viola R; Nagamangala Kanchiswamy C
    Nat Protoc; 2018 Dec; 13(12):2844-2863. PubMed ID: 30390050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.