These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 36690576)

  • 21. Resilience of the Asian atmospheric circulation shown by Paleogene dust provenance.
    Licht A; Dupont-Nivet G; Pullen A; Kapp P; Abels HA; Lai Z; Guo Z; Abell J; Giesler D
    Nat Commun; 2016 Aug; 7():12390. PubMed ID: 27488503
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Equatorial convergence of India and early Cenozoic climate trends.
    Kent DV; Muttoni G
    Proc Natl Acad Sci U S A; 2008 Oct; 105(42):16065-70. PubMed ID: 18809910
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tibet, the Himalaya, Asian monsoons and biodiversity - In what ways are they related?
    Spicer RA
    Plant Divers; 2017 Oct; 39(5):233-244. PubMed ID: 30159517
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Late Miocene episodic lakes in the arid Tarim Basin, western China.
    Liu W; Liu Z; An Z; Sun J; Chang H; Wang N; Dong J; Wang H
    Proc Natl Acad Sci U S A; 2014 Nov; 111(46):16292-6. PubMed ID: 25368156
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Equatorial heat accumulation as a long-term trigger of permanent Antarctic ice sheets during the Cenozoic.
    Tremblin M; Hermoso M; Minoletti F
    Proc Natl Acad Sci U S A; 2016 Oct; 113(42):11782-11787. PubMed ID: 27698116
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A global temperature control of silicate weathering intensity.
    Deng K; Yang S; Guo Y
    Nat Commun; 2022 Apr; 13(1):1781. PubMed ID: 35379826
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biogeographic diversification of
    Xiang KL; Erst AS; Yang J; Peng HW; Ortiz RDC; Jabbour F; Erst TV; Wang W
    Proc Biol Sci; 2021 Apr; 288(1948):20210281. PubMed ID: 33823668
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low-latitude arc-continent collision as a driver for global cooling.
    Jagoutz O; Macdonald FA; Royden L
    Proc Natl Acad Sci U S A; 2016 May; 113(18):4935-40. PubMed ID: 27091966
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamic link between Neo-Tethyan subduction and atmospheric CO
    Shen H; Zhao L; Guo Z; Yuan H; Yang J; Wang X; Guo Z; Deng C; Wu F
    Sci Bull (Beijing); 2023 Mar; 68(6):637-644. PubMed ID: 36907675
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Continental igneous rock composition: A major control of past global chemical weathering.
    Bataille CP; Willis A; Yang X; Liu XM
    Sci Adv; 2017 Mar; 3(3):e1602183. PubMed ID: 28345044
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tibetan plateau aridification linked to global cooling at the Eocene-Oligocene transition.
    Dupont-Nivet G; Krijgsman W; Langereis CG; Abels HA; Dai S; Fang X
    Nature; 2007 Feb; 445(7128):635-8. PubMed ID: 17287807
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polyphase exhumation in the western Qinling Mountains, China: Rapid Early Cretaceous cooling along a lithospheric-scale tear fault and pulsed Cenozoic uplift.
    Heberer B; Anzenbacher T; Neubauer F; Genser J; Dong Y; Dunkl I
    Tectonophysics; 2014 Mar; 617():31-43. PubMed ID: 27065503
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cenozoic global cooling and increased seawater Mg/Ca via reduced reverse weathering.
    Dunlea AG; Murray RW; Santiago Ramos DP; Higgins JA
    Nat Commun; 2017 Oct; 8(1):844. PubMed ID: 29018196
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The timing of continental collision between India and Asia.
    Zheng Y; Wu F
    Sci Bull (Beijing); 2018 Dec; 63(24):1649-1654. PubMed ID: 36658857
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Early Palaeogene temperature evolution of the southwest Pacific Ocean.
    Bijl PK; Schouten S; Sluijs A; Reichart GJ; Zachos JC; Brinkhuis H
    Nature; 2009 Oct; 461(7265):776-9. PubMed ID: 19812670
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate.
    Anagnostou E; John EH; Edgar KM; Foster GL; Ridgwell A; Inglis GN; Pancost RD; Lunt DJ; Pearson PN
    Nature; 2016 May; 533(7603):380-4. PubMed ID: 27111509
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Uplift-driven sediment redness decrease at ~16.5 Ma in the Yumen Basin along the northeastern Tibetan Plateau.
    Wang W; Zhang P; Zheng W; Zheng D; Liu C; Xu H; Zhang H; Yu J; Pang J
    Sci Rep; 2016 Jul; 6():29568. PubMed ID: 27411593
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct structural evidence of Indian continental subduction beneath Myanmar.
    Zheng T; He Y; Ding L; Jiang M; Ai Y; Mon CT; Hou G; Sein K; Thant M
    Nat Commun; 2020 Apr; 11(1):1944. PubMed ID: 32327668
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A 40-million-year history of atmospheric CO(2).
    Zhang YG; Pagani M; Liu Z; Bohaty SM; Deconto R
    Philos Trans A Math Phys Eng Sci; 2013 Oct; 371(2001):20130096. PubMed ID: 24043869
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synchronous tropical and polar temperature evolution in the Eocene.
    Cramwinckel MJ; Huber M; Kocken IJ; Agnini C; Bijl PK; Bohaty SM; Frieling J; Goldner A; Hilgen FJ; Kip EL; Peterse F; van der Ploeg R; Röhl U; Schouten S; Sluijs A
    Nature; 2018 Jul; 559(7714):382-386. PubMed ID: 29967546
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.