These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 3669064)
1. Denaturation of a membrane transport protein by urea: the erythrocyte anion exchanger. Fröhlich O; Jones SC J Membr Biol; 1987; 98(1):33-42. PubMed ID: 3669064 [TBL] [Abstract][Full Text] [Related]
2. Kinetic independence between red cell anion exchange and urea transport. Fröhlich O; Jones SC Biochim Biophys Acta; 1988 Sep; 943(3):531-4. PubMed ID: 3415994 [TBL] [Abstract][Full Text] [Related]
3. Role of substrate binding forces in exchange-only transport systems: II. Implications for the mechanism of the anion exchanger of red cells. Krupka RM J Membr Biol; 1989 Jul; 109(2):159-71. PubMed ID: 2671377 [TBL] [Abstract][Full Text] [Related]
4. Relation between red cell anion exchange and urea transport. Toon MR; Solomon AK Biochim Biophys Acta; 1985 Dec; 821(3):502-4. PubMed ID: 3841011 [TBL] [Abstract][Full Text] [Related]
5. Bicarbonate exchange through the human red cell membrane determined with [14C] bicarbonate. Wieth JO J Physiol; 1979 Sep; 294():521-39. PubMed ID: 512956 [TBL] [Abstract][Full Text] [Related]
6. The external anion binding site of the human erythrocyte anion transporter: DNDS binding and competition with chloride. Fröhlich O J Membr Biol; 1982; 65(1-2):111-23. PubMed ID: 7057455 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of the phosphate self-exchange flux in human erythrocytes and erythrocyte ghosts. Stadler F; Schnell KF J Membr Biol; 1990 Oct; 118(1):19-47. PubMed ID: 2283679 [TBL] [Abstract][Full Text] [Related]
8. New evidence for the essential role of arginine residues in anion transport across the red blood cell membrane. Julien T; Zaki L Biochim Biophys Acta; 1987 Jun; 900(2):169-74. PubMed ID: 3593712 [TBL] [Abstract][Full Text] [Related]
9. A comparison of the inhibitory potency of reversibly acting inhibitors of anion transport on chloride and sulfate movements across the human red cell membrane. Ku CP; Jennings ML; Passow H Biochim Biophys Acta; 1979 May; 553(1):132-41. PubMed ID: 454583 [TBL] [Abstract][Full Text] [Related]
10. Kinetics of bicarbonate and chloride transport in human red cell membranes. Gasbjerg PK; Brahm J J Gen Physiol; 1991 Feb; 97(2):321-49. PubMed ID: 1849960 [TBL] [Abstract][Full Text] [Related]
11. Temperature dependence of anion transport in the human red blood cell. Glibowicka M; Winckler B; Araníbar N; Schuster M; Hanssum H; Rüterjans H; Passow H Biochim Biophys Acta; 1988 Dec; 946(2):345-58. PubMed ID: 3207750 [TBL] [Abstract][Full Text] [Related]
12. Effects of membrane potential on electrically silent transport. Potential-independent translocation and asymmetric potential-dependent substrate binding to the red blood cell anion exchange protein. Jennings ML; Schulz RK; Allen M J Gen Physiol; 1990 Nov; 96(5):991-1012. PubMed ID: 2280255 [TBL] [Abstract][Full Text] [Related]
13. A novel method to differentiate between ping-pong and simultaneous exchange kinetics and its application to the anion exchanger of the HL60 cell. Restrepo D; Cronise BL; Snyder RB; Knauf PA J Gen Physiol; 1992 Nov; 100(5):825-46. PubMed ID: 1474373 [TBL] [Abstract][Full Text] [Related]
15. n-Alkanols and halothane inhibit red cell anion transport and increase band 3 conformational change rate. Forman SA; Verkman AS; Dix JA; Solomon AK Biochemistry; 1985 Aug; 24(18):4859-66. PubMed ID: 4074663 [TBL] [Abstract][Full Text] [Related]
16. Reversible inhibition of anion exchange in human erythrocytes by an inorganic disulfonate, tetrathionate. Deuticke B; von Bentheim M; Beyer E; Kamp D J Membr Biol; 1978 Dec; 44(2):135-58. PubMed ID: 731685 [TBL] [Abstract][Full Text] [Related]
17. Flufenamic acid senses conformation and asymmetry of human erythrocyte band 3 anion transport protein. Knauf PA; Spinelli LJ; Mann NA Am J Physiol; 1989 Aug; 257(2 Pt 1):C277-89. PubMed ID: 2764091 [TBL] [Abstract][Full Text] [Related]
18. Proton inhibition of chloride exchange: asynchrony of band 3 proton and anion transport sites? Milanick MA; Gunn RB Am J Physiol; 1986 Jun; 250(6 Pt 1):C955-69. PubMed ID: 3013020 [TBL] [Abstract][Full Text] [Related]
19. A model for the action of the anion exchange protein of the red blood cell. Rothstein A; Knauf PA; Grinstein S; Shami Y Prog Clin Biol Res; 1979; 30():483-96. PubMed ID: 531039 [TBL] [Abstract][Full Text] [Related]
20. Conformation and stability of the anion transport protein of human erythrocyte membranes. Oikawa K; Lieberman DM; Reithmeier RA Biochemistry; 1985 Jun; 24(12):2843-8. PubMed ID: 4016075 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]