These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 36690858)

  • 21. Topological-chiral magnetic interactions driven by emergent orbital magnetism.
    Grytsiuk S; Hanke JP; Hoffmann M; Bouaziz J; Gomonay O; Bihlmayer G; Lounis S; Mokrousov Y; Blügel S
    Nat Commun; 2020 Jan; 11(1):511. PubMed ID: 31980610
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Domain structure of ultrathin ferromagnetic elements in the presence of Dzyaloshinskii-Moriya interaction.
    Muratov CB; Slastikov VV
    Proc Math Phys Eng Sci; 2017 Jan; 473(2197):20160666. PubMed ID: 28265192
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multiferroics with spiral spin orders.
    Tokura Y; Seki S
    Adv Mater; 2010 Apr; 22(14):1554-65. PubMed ID: 20496385
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of second neighbor interactions on skyrmion lattices in chiral magnets.
    Oliveira EAS; Silva RL; Silva RC; Pereira AR
    J Phys Condens Matter; 2017 May; 29(20):205801. PubMed ID: 28248638
    [TBL] [Abstract][Full Text] [Related]  

  • 25. First Demonstration of Magnetoelectric Coupling in a Polynuclear Molecular Nanomagnet: Single-Crystal EPR Studies of [Fe
    Boudalis AK; Robert J; Turek P
    Chemistry; 2018 Oct; 24(56):14896-14900. PubMed ID: 30136321
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hybrid chiral domain walls and skyrmions in magnetic multilayers.
    Legrand W; Chauleau JY; Maccariello D; Reyren N; Collin S; Bouzehouane K; Jaouen N; Cros V; Fert A
    Sci Adv; 2018 Jul; 4(7):eaat0415. PubMed ID: 30035224
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Curvature-induced stabilization and field-driven dynamics of magnetic hopfions in toroidal nanorings.
    Corona RM; Saavedra E; Castillo-Sepulveda S; Escrig J; Altbir D; Carvalho-Santos VL
    Nanotechnology; 2023 Feb; 34(16):. PubMed ID: 36689765
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unraveling Dzyaloshinskii-Moriya Interaction and Chiral Nature of Graphene/Cobalt Interface.
    Ajejas F; Gudín A; Guerrero R; Anadón Barcelona A; Diez JM; de Melo Costa L; Olleros P; Niño MA; Pizzini S; Vogel J; Valvidares M; Gargiani P; Cabero M; Varela M; Camarero J; Miranda R; Perna P
    Nano Lett; 2018 Sep; 18(9):5364-5372. PubMed ID: 30052462
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Magnon Hall effect without Dzyaloshinskii-Moriya interaction.
    Owerre SA
    J Phys Condens Matter; 2017 Jan; 29(3):03LT01. PubMed ID: 27845921
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Flat Bands, Indirect Gaps, and Unconventional Spin-Wave Behavior Induced by a Periodic Dzyaloshinskii-Moriya Interaction.
    Gallardo RA; Cortés-Ortuño D; Schneider T; Roldán-Molina A; Ma F; Troncoso RE; Lenz K; Fangohr H; Lindner J; Landeros P
    Phys Rev Lett; 2019 Feb; 122(6):067204. PubMed ID: 30822086
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chiral Coupling between Magnetic Layers with Orthogonal Magnetization.
    Avci CO; Lambert CH; Sala G; Gambardella P
    Phys Rev Lett; 2021 Oct; 127(16):167202. PubMed ID: 34723598
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Asymmetric Hysteresis for Probing Dzyaloshinskii-Moriya Interaction.
    Han DS; Kim NH; Kim JS; Yin Y; Koo JW; Cho J; Lee S; Kläui M; Swagten HJ; Koopmans B; You CY
    Nano Lett; 2016 Jul; 16(7):4438-46. PubMed ID: 27348607
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mesoscale Dzyaloshinskii-Moriya interaction: geometrical tailoring of the magnetochirality.
    Volkov OM; Sheka DD; Gaididei Y; Kravchuk VP; Rößler UK; Fassbender J; Makarov D
    Sci Rep; 2018 Jan; 8(1):866. PubMed ID: 29339741
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interlayer Dzyaloshinskii-Moriya Interactions.
    Vedmedenko EY; Riego P; Arregi JA; Berger A
    Phys Rev Lett; 2019 Jun; 122(25):257202. PubMed ID: 31347891
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electric Field-Induced Creation and Directional Motion of Domain Walls and Skyrmion Bubbles.
    Ma C; Zhang X; Xia J; Ezawa M; Jiang W; Ono T; Piramanayagam SN; Morisako A; Zhou Y; Liu X
    Nano Lett; 2019 Jan; 19(1):353-361. PubMed ID: 30537837
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Zig-zag wall lattice in a nematic liquid crystal with an in-plane switching configuration.
    Andrade-Silva I; Clerc MG; Odent V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022504. PubMed ID: 25215746
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interfacial Dzyaloshinskii-Moriya interaction arising from rare-earth orbital magnetism in insulating magnetic oxides.
    Caretta L; Rosenberg E; Büttner F; Fakhrul T; Gargiani P; Valvidares M; Chen Z; Reddy P; Muller DA; Ross CA; Beach GSD
    Nat Commun; 2020 Feb; 11(1):1090. PubMed ID: 32107384
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Control of magnetic states and spin interactions in bilayer CrCl
    Ebrahimian A; Dyrdał A; Qaiumzadeh A
    Sci Rep; 2023 Apr; 13(1):5336. PubMed ID: 37005471
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Noncentrosymmetric Magnets Hosting Magnetic Skyrmions.
    Kanazawa N; Seki S; Tokura Y
    Adv Mater; 2017 Jul; 29(25):. PubMed ID: 28306166
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Long-range chiral exchange interaction in synthetic antiferromagnets.
    Han DS; Lee K; Hanke JP; Mokrousov Y; Kim KW; Yoo W; van Hees YLW; Kim TW; Lavrijsen R; You CY; Swagten HJM; Jung MH; Kläui M
    Nat Mater; 2019 Jul; 18(7):703-708. PubMed ID: 31160801
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.