BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 36691040)

  • 1. The Weimberg pathway: an alternative for Myceliophthora thermophila to utilize D-xylose.
    Liu D; Zhang Y; Li J; Sun W; Yao Y; Tian C
    Biotechnol Biofuels Bioprod; 2023 Jan; 16(1):13. PubMed ID: 36691040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of modifications procuring growth on xylose in recombinant Saccharomyces cerevisiae strains carrying the Weimberg pathway.
    Borgström C; Wasserstrom L; Almqvist H; Broberg K; Klein B; Noack S; Lidén G; Gorwa-Grauslund MF
    Metab Eng; 2019 Sep; 55():1-11. PubMed ID: 31150803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering Escherichia coli to grow constitutively on D-xylose using the carbon-efficient Weimberg pathway.
    Rossoni L; Carr R; Baxter S; Cortis R; Thorpe T; Eastham G; Stephens G
    Microbiology (Reading); 2018 Mar; 164(3):287-298. PubMed ID: 29458683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Isomerase and Weimberg Pathway for γ-PGA Production From Xylose by Engineered
    Halmschlag B; Hoffmann K; Hanke R; Putri SP; Fukusaki E; Büchs J; Blank LM
    Front Bioeng Biotechnol; 2019; 7():476. PubMed ID: 32039180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring D-xylose oxidation in Saccharomyces cerevisiae through the Weimberg pathway.
    Wasserstrom L; Portugal-Nunes D; Almqvist H; Sandström AG; Lidén G; Gorwa-Grauslund MF
    AMB Express; 2018 Mar; 8(1):33. PubMed ID: 29508097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Herbaspirillum seropedicae expresses non-phosphorylative pathways for D-xylose catabolism.
    Malán AK; Tuleski T; Catalán AI; de Souza EM; Batista S
    Appl Microbiol Biotechnol; 2021 Oct; 105(19):7339-7352. PubMed ID: 34499201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional Profiling of
    Wang H; Sun T; Zhao Z; Gu S; Liu Q; Wu T; Wang D; Tian C; Li J
    Front Microbiol; 2021; 12():664011. PubMed ID: 33995328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alone at last! - Heterologous expression of a single gene is sufficient for establishing the five-step Weimberg pathway in
    Brüsseler C; Späth A; Sokolowsky S; Marienhagen J
    Metab Eng Commun; 2019 Dec; 9():e00090. PubMed ID: 31016135
    [No Abstract]   [Full Text] [Related]  

  • 9. Metabolic engineering of the cellulolytic thermophilic fungus
    Li J; Zhang Y; Li J; Sun T; Tian C
    Biotechnol Biofuels; 2020; 13():23. PubMed ID: 32021654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of Corynebacterium glutamicum for minimized carbon loss during utilization of D-xylose containing substrates.
    Radek A; Krumbach K; Gätgens J; Wendisch VF; Wiechert W; Bott M; Noack S; Marienhagen J
    J Biotechnol; 2014 Dec; 192 Pt A():156-60. PubMed ID: 25304460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissecting cellobiose metabolic pathway and its application in biorefinery through consolidated bioprocessing in
    Li J; Gu S; Zhao Z; Chen B; Liu Q; Sun T; Sun W; Tian C
    Fungal Biol Biotechnol; 2019; 6():21. PubMed ID: 31754437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and function of aldopentose catabolism enzymes involved in oxidative non-phosphorylative pathways.
    Ren Y; Eronen V; Blomster Andberg M; Koivula A; Hakulinen N
    Biotechnol Biofuels Bioprod; 2022 Dec; 15(1):147. PubMed ID: 36578086
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Dos Santos Gomes AC; Falkoski D; Battaglia E; Peng M; Nicolau de Almeida M; Coconi Linares N; Meijnen JP; Visser J; de Vries RP
    Biotechnol Biofuels; 2019; 12():220. PubMed ID: 31534479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Three Xylose Pathways in
    Bator I; Wittgens A; Rosenau F; Tiso T; Blank LM
    Front Bioeng Biotechnol; 2019; 7():480. PubMed ID: 32010683
    [No Abstract]   [Full Text] [Related]  

  • 15. Metabolic engineering of the thermophilic filamentous fungus
    Gu S; Li J; Chen B; Sun T; Liu Q; Xiao D; Tian C
    Biotechnol Biofuels; 2018; 11():323. PubMed ID: 30534201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MtTRC-1, a Novel Transcription Factor, Regulates Cellulase Production via Directly Modulating the Genes Expression of the
    Li N; Liu Y; Liu D; Liu D; Zhang C; Lin L; Zhu Z; Li H; Dai Y; Wang X; Liu Q; Tian C
    Appl Environ Microbiol; 2022 Oct; 88(19):e0126322. PubMed ID: 36165620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of 1,2,4-butanetriol from xylose by Saccharomyces cerevisiae through Fe metabolic engineering.
    Bamba T; Yukawa T; Guirimand G; Inokuma K; Sasaki K; Hasunuma T; Kondo A
    Metab Eng; 2019 Dec; 56():17-27. PubMed ID: 31434008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overcoming glutamate auxotrophy in
    Lu KW; Wang CT; Chang H; Wang RS; Shen CR
    Metab Eng Commun; 2021 Dec; 13():e00190. PubMed ID: 34934621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstruction and analysis of genome-scale metabolic model for thermophilic fungus Myceliophthora thermophila.
    Liu D; Xu Z; Li J; Liu Q; Yuan Q; Guo Y; Ma H; Tian C
    Biotechnol Bioeng; 2022 Jul; 119(7):1926-1937. PubMed ID: 35257374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic improvement of isobutanol production from D-xylose in engineered Saccharomyces cerevisiae.
    Promdonkoy P; Siripong W; Downes JJ; Tanapongpipat S; Runguphan W
    AMB Express; 2019 Oct; 9(1):160. PubMed ID: 31599368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.