BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 36691040)

  • 21. Modular pathway engineering of Corynebacterium glutamicum to improve xylose utilization and succinate production.
    Jo S; Yoon J; Lee SM; Um Y; Han SO; Woo HM
    J Biotechnol; 2017 Sep; 258():69-78. PubMed ID: 28153765
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sulfolobus acidocaldarius Transports Pentoses via a Carbohydrate Uptake Transporter 2 (CUT2)-Type ABC Transporter and Metabolizes Them through the Aldolase-Independent Weimberg Pathway.
    Wagner M; Shen L; Albersmeier A; van der Kolk N; Kim S; Cha J; Bräsen C; Kalinowski J; Siebers B; Albers SV
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150511
    [No Abstract]   [Full Text] [Related]  

  • 23. Microaerobic growth-decoupled production of α-ketoglutarate and succinate from xylose in a one-pot process using Corynebacterium glutamicum.
    Tenhaef N; Kappelmann J; Eich A; Weiske M; Brieß L; Brüsseler C; Marienhagen J; Wiechert W; Noack S
    Biotechnol J; 2021 Sep; 16(9):e2100043. PubMed ID: 34089621
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Construction of an enzyme-constrained metabolic network model for Myceliophthora thermophila using machine learning-based k
    Wang Y; Mao Z; Dong J; Zhang P; Gao Q; Liu D; Tian C; Ma H
    Microb Cell Fact; 2024 May; 23(1):138. PubMed ID: 38750569
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolic engineering of Arabidopsis for butanetriol production using bacterial genes.
    Abdel-Ghany SE; Day I; Heuberger AL; Broeckling CD; Reddy AS
    Metab Eng; 2013 Nov; 20():109-20. PubMed ID: 24126081
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient simultaneous utilization of glucose and xylose from corn straw by Sphingomonas sanxanigenens NX02 to produce microbial exopolysaccharide.
    Wu M; Zhao X; Shen Y; Shi Z; Li G; Ma T
    Bioresour Technol; 2021 Jan; 319():124126. PubMed ID: 32971336
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deciphering bacterial xylose metabolism and metabolic engineering of industrial microorganisms for use as efficient microbial cell factories.
    Kim D; Woo HM
    Appl Microbiol Biotechnol; 2018 Nov; 102(22):9471-9480. PubMed ID: 30238140
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The myo-inositol/proton symporter IolT1 contributes to d-xylose uptake in Corynebacterium glutamicum.
    Brüsseler C; Radek A; Tenhaef N; Krumbach K; Noack S; Marienhagen J
    Bioresour Technol; 2018 Feb; 249():953-961. PubMed ID: 29145122
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coordination of consolidated bioprocessing technology and carbon dioxide fixation to produce malic acid directly from plant biomass in Myceliophthora thermophila.
    Li J; Chen B; Gu S; Zhao Z; Liu Q; Sun T; Zhang Y; Wu T; Liu D; Sun W; Tian C
    Biotechnol Biofuels; 2021 Sep; 14(1):186. PubMed ID: 34556173
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Upgrading of efficient and scalable CRISPR-Cas-mediated technology for genetic engineering in thermophilic fungus
    Liu Q; Zhang Y; Li F; Li J; Sun W; Tian C
    Biotechnol Biofuels; 2019; 12():293. PubMed ID: 31890021
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective.
    Kwak S; Jin YS
    Microb Cell Fact; 2017 May; 16(1):82. PubMed ID: 28494761
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigation of the Synergetic Effect of Xylose Metabolic Pathways on the Production of Glutaric Acid.
    Wang J; Shen X; Lin Y; Chen Z; Yang Y; Yuan Q; Yan Y
    ACS Synth Biol; 2018 Jan; 7(1):24-29. PubMed ID: 28945971
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PFK2/FBPase-2 is a potential target for metabolic engineering in the filamentous fungus
    Hu D; Zhang Y; Liu D; Wang D; Tian C
    Front Microbiol; 2022; 13():1056694. PubMed ID: 36478865
    [TBL] [Abstract][Full Text] [Related]  

  • 34. D-Xylose assimilation via the Weimberg pathway by solvent-tolerant Pseudomonas taiwanensis VLB120.
    Köhler KA; Blank LM; Frick O; Schmid A
    Environ Microbiol; 2015 Jan; 17(1):156-70. PubMed ID: 24934825
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Production of Optically Pure (
    Cao Y; Niu W; Guo J; Guo J; Liu H; Liu H; Xian M
    J Agric Food Chem; 2023 Dec; 71(50):20167-20176. PubMed ID: 38088131
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biotechnological production of 1,2,4-butanetriol: An efficient process to synthesize energetic material precursor from renewable biomass.
    Cao Y; Niu W; Guo J; Xian M; Liu H
    Sci Rep; 2015 Dec; 5():18149. PubMed ID: 26670289
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evidence of a plasmid-encoded oxidative xylose-catabolic pathway in Arthrobacter nicotinovorans pAO1.
    Mihasan M; Stefan M; Hritcu L; Artenie V; Brandsch R
    Res Microbiol; 2013 Jan; 164(1):22-30. PubMed ID: 23063486
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of an Efficient C-to-T Base-Editing System and Its Application to Cellulase Transcription Factor Precise Engineering in Thermophilic Fungus
    Zhang C; Li N; Rao L; Li J; Liu Q; Tian C
    Microbiol Spectr; 2022 Jun; 10(3):e0232121. PubMed ID: 35608343
    [No Abstract]   [Full Text] [Related]  

  • 39. Comparing the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in arabinose and xylose fermenting Saccharomyces cerevisiae strains.
    Bettiga M; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Biotechnol Biofuels; 2008 Oct; 1(1):16. PubMed ID: 18947407
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetic analysis of D-xylose metabolism pathways in Gluconobacter oxydans 621H.
    Zhang M; Wei L; Zhou Y; Du L; Imanaka T; Hua Q
    J Ind Microbiol Biotechnol; 2013 Apr; 40(3-4):379-88. PubMed ID: 23381123
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.