These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 36691081)

  • 21. Structure and stability of mRNA synthesized by vaccinia virus-encoded bacteriophage T7 RNA polymerase in mammalian cells. Importance of the 5' untranslated leader.
    Fuerst TR; Moss B
    J Mol Biol; 1989 Mar; 206(2):333-48. PubMed ID: 2497259
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Studies on the interaction of T7 RNA polymerase with a DNA template containing a site-specifically placed psoralen cross-link. II. Stability and some properties of elongation complexes.
    Sastry SS; Hearst JE
    J Mol Biol; 1991 Oct; 221(4):1111-25. PubMed ID: 1942045
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Utilization of promoter and terminator sites on bacteriophage T7 DNA by RNA polymerases from a variety of bacterial orders.
    Wiggs JL; Bush JW; Chamberlin MJ
    Cell; 1979 Jan; 16(1):97-109. PubMed ID: 421272
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel analytical principle using AP site-mediated T7 RNA polymerase transcription regulation for sensing uracil-DNA glycosylase activity.
    Gao W; Xu J; Lian G; Wang X; Gong X; Zhou D; Chang J
    Analyst; 2020 Jun; 145(12):4321-4327. PubMed ID: 32432603
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcription by T7 RNA polymerase using benzo[a]pyrene-modified templates.
    Nath ST; Romano LJ
    Carcinogenesis; 1991 Jun; 12(6):973-6. PubMed ID: 1710544
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A direct effect of guanosine tetraphosphate on pausing of Escherichia coli RNA polymerase during RNA chain elongation.
    Kingston RE; Nierman WC; Chamberlin MJ
    J Biol Chem; 1981 Mar; 256(6):2787-97. PubMed ID: 7009598
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coupled cytoplasmic transcription-and-translation--a method of choice for heterologous gene expression in Xenopus oocytes.
    Tokmakov AA; Matsumoto E; Shirouzu M; Yokoyama S
    J Biotechnol; 2006 Mar; 122(1):5-15. PubMed ID: 16202467
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Maximizing transcription of nucleic acids with efficient T7 promoters.
    Conrad T; Plumbom I; Alcobendas M; Vidal R; Sauer S
    Commun Biol; 2020 Aug; 3(1):439. PubMed ID: 32796901
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes.
    Studier FW; Moffatt BA
    J Mol Biol; 1986 May; 189(1):113-30. PubMed ID: 3537305
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Studies on the interaction of T7 RNA polymerase with a DNA template containing a site-specifically placed psoralen cross-link. I. Characterization of elongation complexes.
    Sastry SS; Hearst JE
    J Mol Biol; 1991 Oct; 221(4):1091-110. PubMed ID: 1942044
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Template-free generation of RNA species that replicate with bacteriophage T7 RNA polymerase.
    Biebricher CK; Luce R
    EMBO J; 1996 Jul; 15(13):3458-65. PubMed ID: 8670848
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcription bypass or blockage at single-strand breaks on the DNA template strand: effect of different 3' and 5' flanking groups on the T7 RNA polymerase elongation complex.
    Zhou W; Doetsch PW
    Biochemistry; 1994 Dec; 33(49):14926-34. PubMed ID: 7993919
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates.
    Milligan JF; Groebe DR; Witherell GW; Uhlenbeck OC
    Nucleic Acids Res; 1987 Nov; 15(21):8783-98. PubMed ID: 3684574
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Altered promoter selection by a novel form of Bacillus subtilis RNA polymerase.
    Jaehning JA; Wiggs JL; Chamberlin MJ
    Proc Natl Acad Sci U S A; 1979 Nov; 76(11):5470-4. PubMed ID: 118448
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Construction of T7 RNA polymerase gene expression system in Anabaena sp. PCC 7120 for the expression of hG-CSF].
    Xie X; Tian Y; Tian J; Ning W; Wang C
    Sheng Wu Gong Cheng Xue Bao; 2020 Nov; 36(11):2467-2477. PubMed ID: 33244941
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthetic logic circuits using RNA aptamer against T7 RNA polymerase.
    Kim J; Quijano JF; Kim J; Yeung E; Murray RM
    Biotechnol J; 2022 Mar; 17(3):e2000449. PubMed ID: 33813787
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A combined in vitro/in vivo selection for polymerases with novel promoter specificities.
    Chelliserrykattil J; Cai G; Ellington AD
    BMC Biotechnol; 2001; 1():13. PubMed ID: 11806761
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Facilitated in vivo synthesis of ribonucleic acid and protein via T7 RNA polymerase.
    Wang TH; Yu SH; Au LC
    Anal Biochem; 2008 Apr; 375(1):97-104. PubMed ID: 18162164
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A coupled in vitro transcription-translation system for the exclusive synthesis of polypeptides expressed from the T7 promoter.
    Nevin DE; Pratt JM
    FEBS Lett; 1991 Oct; 291(2):259-63. PubMed ID: 1936272
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Whole Genome Amplification by T7-Based Linear Amplification of DNA (TLAD): II. Second-Strand Synthesis and In Vitro Transcription.
    Liu CL; Bernstein BE; Schreiber SL
    CSH Protoc; 2008 May; 2008():pdb.prot5003. PubMed ID: 21356835
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.