These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 36691478)

  • 1. The energetic effect of hip flexion and retraction in walking at different speeds: a modeling study.
    Jin J; Kistemaker D; van Dieën JH; Daffertshofer A; Bruijn SM
    PeerJ; 2023; 11():e14662. PubMed ID: 36691478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical and energetic consequences of reduced ankle plantar-flexion in human walking.
    Huang TW; Shorter KA; Adamczyk PG; Kuo AD
    J Exp Biol; 2015 Nov; 218(Pt 22):3541-50. PubMed ID: 26385330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Torque Curve Optimization of Ankle Push-Off in Walking Bipedal Robots Using Genetic Algorithm.
    Ji Q; Qian Z; Ren L; Ren L
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34069192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of series ankle elasticity in bipedal walking.
    Zelik KE; Huang TW; Adamczyk PG; Kuo AD
    J Theor Biol; 2014 Apr; 346():75-85. PubMed ID: 24365635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanics and energetics of load carriage during human walking.
    Huang TW; Kuo AD
    J Exp Biol; 2014 Feb; 217(Pt 4):605-13. PubMed ID: 24198268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adding adaptable toe stiffness affects energetic efficiency and dynamic behaviors of bipedal walking.
    Sun S; Huang Y; Wang Q
    J Theor Biol; 2016 Jan; 388():108-18. PubMed ID: 26519906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical effects of passive hip springs during walking.
    Haufe FL; Wolf P; Riener R; Grimmer M
    J Biomech; 2020 Jan; 98():109432. PubMed ID: 31662197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the biological mechanics and energetics of the hip joint muscle-tendon system assisted by passive hip exoskeleton.
    Chen W; Wu S; Zhou T; Xiong C
    Bioinspir Biomim; 2018 Dec; 14(1):016012. PubMed ID: 30511650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical effects of augmented ankle power output during human walking.
    Fickey SN; Browne MG; Franz JR
    J Exp Biol; 2018 Nov; 221(Pt 22):. PubMed ID: 30266784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prosthetic ankle push-off work reduces metabolic rate but not collision work in non-amputee walking.
    Caputo JM; Collins SH
    Sci Rep; 2014 Dec; 4():7213. PubMed ID: 25467389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The contribution of passive-elastic mechanisms to lower extremity joint kinetics during human walking.
    Whittington B; Silder A; Heiderscheit B; Thelen DG
    Gait Posture; 2008 May; 27(4):628-34. PubMed ID: 17928228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of muscle energy models for simulating human walking in three dimensions.
    Miller RH
    J Biomech; 2014 Apr; 47(6):1373-81. PubMed ID: 24581797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spring uses in exoskeleton actuation design.
    Wang S; van Dijk W; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975471. PubMed ID: 22275669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impulsive ankle push-off powers leg swing in human walking.
    Lipfert SW; Günther M; Renjewski D; Seyfarth A
    J Exp Biol; 2014 Apr; 217(Pt 8):1218-28. PubMed ID: 24363410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Walking with increased ankle pushoff decreases hip muscle moments.
    Lewis CL; Ferris DP
    J Biomech; 2008 Jul; 41(10):2082-9. PubMed ID: 18606419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking.
    Neptune RR; Kautz SA; Zajac FE
    J Biomech; 2001 Nov; 34(11):1387-98. PubMed ID: 11672713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Short-Term Limitation of Movement of the First Metatarsophalangeal Joint on the Biomechanics of the Ipsilateral Hip, Knee, and Ankle Joints During Walking.
    Xu R; Zuo H; Ji Y; Li Q; Wang Z; Liu H; Wang J; Wei Z; Li W; Cong L; Li H; Jin H; Wang J
    Med Sci Monit; 2021 Mar; 27():e930081. PubMed ID: 33664219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of walking speed on muscle function and mechanical energetics.
    Neptune RR; Sasaki K; Kautz SA
    Gait Posture; 2008 Jul; 28(1):135-43. PubMed ID: 18158246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of ankle foot orthosis stiffness on the energy cost of walking: a simulation study.
    Bregman DJ; van der Krogt MM; de Groot V; Harlaar J; Wisse M; Collins SH
    Clin Biomech (Bristol, Avon); 2011 Nov; 26(9):955-61. PubMed ID: 21723012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.