These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36691618)

  • 1. Wrinkle nanostructures generate a novel form of blue structural color in great argus flight feathers.
    Eliason CM; Clarke JA; Kane SA
    iScience; 2023 Jan; 26(1):105912. PubMed ID: 36691618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell structure of developing barbs and barbules in downfeathers of the chick: Central role of barb ridge morphogenesis for the evolution of feathers.
    Alibardi L
    J Submicrosc Cytol Pathol; 2005 Apr; 37(1):19-41. PubMed ID: 16136726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and optical function of amorphous photonic nanostructures from avian feather barbs: a comparative small angle X-ray scattering (SAXS) analysis of 230 bird species.
    Saranathan V; Forster JD; Noh H; Liew SF; Mochrie SG; Cao H; Dufresne ER; Prum RO
    J R Soc Interface; 2012 Oct; 9(75):2563-80. PubMed ID: 22572026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A closer look at the feather coloration in the male purple sunbird, Nectarinia asiatica.
    Mahapatra BB; Marathe SA; Meyer-Rochow VB; Mishra M
    Micron; 2016 Jun; 85():44-50. PubMed ID: 27088228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Significance of a basal melanin layer to production of non-iridescent structural plumage color: evidence from an amelanotic Steller's jay (Cyanocitta stelleri).
    Shawkey MD; Hill GE
    J Exp Biol; 2006 Apr; 209(Pt 7):1245-50. PubMed ID: 16547296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms involved in the production of differently colored feathers in the structurally colored swallow tanager (Tersina viridis; Aves: Thraupidae).
    Bazzano LT; Mendicino LR; Inchaussandague ME; Skigin DC; García NC; Tubaro PL; Barreira AS
    J Exp Zool B Mol Dev Evol; 2021 Jul; 336(5):404-416. PubMed ID: 33988912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultraviolet Reflectance Structures of Peacock Feathers.
    Okazaki T
    Zoolog Sci; 2018 Oct; 35(5):421-426. PubMed ID: 30298782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A lightweight, biological structure with tailored stiffness: The feather vane.
    Sullivan TN; Pissarenko A; Herrera SA; Kisailus D; Lubarda VA; Meyers MA
    Acta Biomater; 2016 Sep; 41():27-39. PubMed ID: 27184403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reflectance Spectra of Peacock Feathers and the Turning Angles of Melanin Rods in Barbules.
    Okazaki T
    Zoolog Sci; 2018 Feb; 35(1):86-91. PubMed ID: 29417896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential effects of early growth conditions on colour-producing nanostructures revealed through small angle X-ray scattering and electron microscopy.
    Janas K; Łatkiewicz A; Parnell A; Lutyk D; Barczyk J; Shawkey MD; Gustafsson L; Cichoń M; Drobniak SM
    J Exp Biol; 2020 Sep; 223(Pt 18):. PubMed ID: 32764026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iridescent structural colour production in male blue-black grassquit feather barbules: the role of keratin and melanin.
    Maia R; Caetano JV; Báo SN; Macedo RH
    J R Soc Interface; 2009 Apr; 6 Suppl 2(Suppl 2):S203-11. PubMed ID: 19141431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new helical crossed-fibre structure of β-keratin in flight feathers and its biomechanical implications.
    Lingham-Soliar T; Murugan N
    PLoS One; 2013; 8(6):e65849. PubMed ID: 23762440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of evolutionary change in structural plumage coloration among bluebirds (Sialia spp.).
    Shawkey MD; Balenger SL; Hill GE; Johnson LS; Keyser AJ; Siefferman L
    J R Soc Interface; 2006 Aug; 3(9):527-32. PubMed ID: 16849249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of colour-producing beta-keratin nanostructures in avian feather barbs.
    Prum RO; Dufresne ER; Quinn T; Waters K
    J R Soc Interface; 2009 Apr; 6 Suppl 2(Suppl 2):S253-65. PubMed ID: 19336345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. What makes a feather shine? A nanostructural basis for glossy black colours in feathers.
    Maia R; D'Alba L; Shawkey MD
    Proc Biol Sci; 2011 Jul; 278(1714):1973-80. PubMed ID: 21123257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective biodegradation of keratin matrix in feather rachis reveals classic bioengineering.
    Lingham-Soliar T; Bonser RH; Wesley-Smith J
    Proc Biol Sci; 2010 Apr; 277(1685):1161-8. PubMed ID: 20018788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feather iridescence of
    Giraldo M; Sosa J; Stavenga D
    Biol Lett; 2021 Aug; 17(8):20210190. PubMed ID: 34428957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral tuning of Amazon parrot feather coloration by psittacofulvin pigments and spongy structures.
    Tinbergen J; Wilts BD; Stavenga DG
    J Exp Biol; 2013 Dec; 216(Pt 23):4358-64. PubMed ID: 24031051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manakins can produce iridescent and bright feather colours without melanosomes.
    Igic B; D'Alba L; Shawkey MD
    J Exp Biol; 2016 Jun; 219(Pt 12):1851-9. PubMed ID: 27307543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proximate bases of silver color in anhinga (Anhinga anhinga) feathers.
    Shawkey MD; Maia R; D'Alba L
    J Morphol; 2011 Nov; 272(11):1399-407. PubMed ID: 21755527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.