These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 36691741)

  • 1. Hybrid electrosynthesis as non-genetic approach for regulating microbial metabolism towards waste valorization in circular framework.
    Sravan JS; Mohan SV
    Microb Biotechnol; 2023 Feb; 16(2):184-189. PubMed ID: 36691741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Food waste biorefinery: Sustainable strategy for circular bioeconomy.
    Dahiya S; Kumar AN; Shanthi Sravan J; Chatterjee S; Sarkar O; Mohan SV
    Bioresour Technol; 2018 Jan; 248(Pt A):2-12. PubMed ID: 28823499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial electrochemical platform for the production of renewable fuels and chemicals.
    Chu N; Liang Q; Jiang Y; Zeng RJ
    Biosens Bioelectron; 2020 Feb; 150():111922. PubMed ID: 31786022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon dioxide and organic waste valorization by microbial electrosynthesis and electro-fermentation.
    Jiang Y; May HD; Lu L; Liang P; Huang X; Ren ZJ
    Water Res; 2019 Feb; 149():42-55. PubMed ID: 30419466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent achievements in platform chemical production from food waste.
    Lee J; Chen WH; Park YK
    Bioresour Technol; 2022 Dec; 366():128204. PubMed ID: 36326551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Upgrading the value of anaerobic fermentation via renewable chemicals production: A sustainable integration for circular bioeconomy.
    Naresh Kumar A; Sarkar O; Chandrasekhar K; Raj T; Narisetty V; Mohan SV; Pandey A; Varjani S; Kumar S; Sharma P; Jeon BH; Jang M; Kim SH
    Sci Total Environ; 2022 Feb; 806(Pt 1):150312. PubMed ID: 34844320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fungal biorefinery for sustainable resource recovery from waste.
    Chatterjee S; Venkata Mohan S
    Bioresour Technol; 2022 Feb; 345():126443. PubMed ID: 34852279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Medium Chain Carboxylic Acids from Complex Organic Feedstocks by Mixed Culture Fermentation.
    De Groof V; Coma M; Arnot T; Leak DJ; Lanham AB
    Molecules; 2019 Jan; 24(3):. PubMed ID: 30678297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers.
    Koutinas AA; Vlysidis A; Pleissner D; Kopsahelis N; Lopez Garcia I; Kookos IK; Papanikolaou S; Kwan TH; Lin CS
    Chem Soc Rev; 2014 Apr; 43(8):2587-627. PubMed ID: 24424298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bio-hythane production from microalgae biomass: Key challenges and potential opportunities for algal bio-refineries.
    Ghimire A; Kumar G; Sivagurunathan P; Shobana S; Saratale GD; Kim HW; Luongo V; Esposito G; Munoz R
    Bioresour Technol; 2017 Oct; 241():525-536. PubMed ID: 28601770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis mechanisms of medium-chain carboxylic acids and alcohols in anaerobic microalgae fermentation regulated by pH conditions.
    Shi X; Wei W; Wu L; Huang Y; Ni B-J
    Appl Environ Microbiol; 2024 Jan; 90(1):e0125023. PubMed ID: 38112479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dark fermentation and microalgae cultivation coupled systems: Outlook and challenges.
    Lacroux J; Llamas M; Dauptain K; Avila R; Steyer JP; van Lis R; Trably E
    Sci Total Environ; 2023 Mar; 865():161136. PubMed ID: 36587699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Top chemical opportunities from carbohydrate biomass: a chemist's view of the Biorefinery.
    Dusselier M; Mascal M; Sels BF
    Top Curr Chem; 2014; 353():1-40. PubMed ID: 24842622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Waste-derived volatile fatty acids as carbon source for added-value fermentation approaches.
    Chalima A; de Castro LF; Burgstaller L; Sampaio P; Carolas AL; Gildemyn S; Velghe F; Ferreira BS; Pais C; Neureiter M; Dietrich T; Topakas E
    FEMS Microbiol Lett; 2021 May; 368(9):. PubMed ID: 34036336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sustainable Production of Biofuels and Biochemicals via Electro-Fermentation Technology.
    Salar-García MJ; Ortiz-Martínez VM; Sánchez-Segado S; Valero Sánchez R; Sáez López A; Lozano Blanco LJ; Godínez-Seoane C
    Molecules; 2024 Feb; 29(4):. PubMed ID: 38398584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biohydrogen production from dairy manures with acidification pretreatment by anaerobic fermentation.
    Xing Y; Li Z; Fan Y; Hou H
    Environ Sci Pollut Res Int; 2010 Feb; 17(2):392-9. PubMed ID: 19499259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biohydrogen, biomethane and bioelectricity as crucial components of biorefinery of organic wastes: a review.
    Poggi-Varaldo HM; Munoz-Paez KM; Escamilla-Alvarado C; Robledo-Narváez PN; Ponce-Noyola MT; Calva-Calva G; Ríos-Leal E; Galíndez-Mayer J; Estrada-Vázquez C; Ortega-Clemente A; Rinderknecht-Seijas NF
    Waste Manag Res; 2014 May; 32(5):353-65. PubMed ID: 24742981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dark fermentative hydrogen production: Potential of food waste as future energy needs.
    Mohanakrishna G; Sneha NP; Rafi SM; Sarkar O
    Sci Total Environ; 2023 Aug; 888():163801. PubMed ID: 37127164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Valorization of food waste: A comprehensive review of individual technologies for producing bio-based products.
    Ansari SA; Kumar T; Sawarkar R; Gobade M; Khan D; Singh L
    J Environ Manage; 2024 Jul; 364():121439. PubMed ID: 38870792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.