These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 36691878)
1. A General Strategy to Remove Metal Aggregates toward Metal-Nitrogen-Carbon Catalysts with Exclusive Atomic Dispersion. Liu J; Liao J; Huang K; Dong J; He G; Gong Z; Fei H Adv Mater; 2023 Apr; 35(15):e2211398. PubMed ID: 36691878 [TBL] [Abstract][Full Text] [Related]
3. Tunable Synthesis of Hollow Metal-Nitrogen-Carbon Capsules for Efficient Oxygen Reduction Catalysis in Proton Exchange Membrane Fuel Cells. Yang H; Chen X; Chen WT; Wang Q; Cuello NC; Nafady A; Al-Enizi AM; Waterhouse GIN; Goenaga GA; Zawodzinski TA; Kruger PE; Clements JE; Zhang J; Tian H; Telfer SG; Ma S ACS Nano; 2019 Jul; 13(7):8087-8098. PubMed ID: 31244037 [TBL] [Abstract][Full Text] [Related]
4. Steering Catalytic Selectivity with Atomically Dispersed Metal Electrocatalysts for Renewable Energy Conversion and Commodity Chemical Production. Kim JH; Sa YJ; Lim T; Woo J; Joo SH Acc Chem Res; 2022 Sep; 55(18):2672-2684. PubMed ID: 36067418 [TBL] [Abstract][Full Text] [Related]
5. Facile Fabrication of the Cu-N-C Catalyst with Atomically Dispersed Unsaturated Cu-N2 Active Sites for Highly Efficient and Selective Glaser-Hay Coupling. Ren P; Li Q; Song T; Yang Y ACS Appl Mater Interfaces; 2020 Jun; 12(24):27210-27218. PubMed ID: 32438795 [TBL] [Abstract][Full Text] [Related]
6. Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Zhao L; Zhang Y; Huang LB; Liu XZ; Zhang QH; He C; Wu ZY; Zhang LJ; Wu J; Yang W; Gu L; Hu JS; Wan LJ Nat Commun; 2019 Mar; 10(1):1278. PubMed ID: 30894539 [TBL] [Abstract][Full Text] [Related]
7. Identification of Catalytic Sites for Oxygen Reduction in Metal/Nitrogen-Doped Carbons with Encapsulated Metal Nanoparticles. Chen MX; Zhu M; Zuo M; Chu SQ; Zhang J; Wu Y; Liang HW; Feng X Angew Chem Int Ed Engl; 2020 Jan; 59(4):1627-1633. PubMed ID: 31674103 [TBL] [Abstract][Full Text] [Related]
8. Extending conducting channels in Fe-N-C by interfacial growth of CNTs with minimal metal loss for efficient ORR electrocatalysis. Garg R; Jaiswal M; Kumar K; Kaur K; Rawat B; Kailasam K; Gautam UK Nanoscale; 2023 Oct; 15(38):15590-15599. PubMed ID: 37728049 [TBL] [Abstract][Full Text] [Related]
9. Controlled synthesis of single cobalt atom catalysts via a facile one-pot pyrolysis for efficient oxygen reduction and hydrogen evolution reactions. Wang Y; Chen L; Mao Z; Peng L; Xiang R; Tang X; Deng J; Wei Z; Liao Q Sci Bull (Beijing); 2019 Aug; 64(15):1095-1102. PubMed ID: 36659770 [TBL] [Abstract][Full Text] [Related]
10. Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Wu G; Zelenay P Acc Chem Res; 2013 Aug; 46(8):1878-89. PubMed ID: 23815084 [TBL] [Abstract][Full Text] [Related]
11. Constructing atomically-dispersed Mn on ZIF-derived nitrogen-doped carbon for boosting oxygen reduction. Deng Y; Pang J; Ge W; Zhang M; Zhang W; Zhang W; Xiang M; Zhou Q; Bai J Front Chem; 2022; 10():969905. PubMed ID: 36092675 [TBL] [Abstract][Full Text] [Related]
12. Porous Carbon-Hosted Atomically Dispersed Iron-Nitrogen Moiety as Enhanced Electrocatalysts for Oxygen Reduction Reaction in a Wide Range of pH. Fu S; Zhu C; Su D; Song J; Yao S; Feng S; Engelhard MH; Du D; Lin Y Small; 2018 Mar; 14(12):e1703118. PubMed ID: 29430838 [TBL] [Abstract][Full Text] [Related]
13. A General Strategy to Atomically Dispersed Precious Metal Catalysts for Unravelling Their Catalytic Trends for Oxygen Reduction Reaction. Kim JH; Shin D; Lee J; Baek DS; Shin TJ; Kim YT; Jeong HY; Kwak JH; Kim H; Joo SH ACS Nano; 2020 Feb; 14(2):1990-2001. PubMed ID: 31999424 [TBL] [Abstract][Full Text] [Related]
14. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes. Zhu YP; Guo C; Zheng Y; Qiao SZ Acc Chem Res; 2017 Apr; 50(4):915-923. PubMed ID: 28205437 [TBL] [Abstract][Full Text] [Related]
15. Ni and Fe nanoparticles, alloy and Ni/Fe-N Yun S; Zhang Y; Zhang L; Liu Z; Deng Y J Colloid Interface Sci; 2022 Jun; 615():501-516. PubMed ID: 35152071 [TBL] [Abstract][Full Text] [Related]
16. Transition Metal (Co, Ni, Fe, Cu) Single-Atom Catalysts Anchored on 3D Nitrogen-Doped Porous Carbon Nanosheets as Efficient Oxygen Reduction Electrocatalysts for Zn-Air Battery. Zhang M; Li H; Chen J; Ma FX; Zhen L; Wen Z; Xu CY Small; 2022 Aug; 18(34):e2202476. PubMed ID: 35905493 [TBL] [Abstract][Full Text] [Related]
17. Atomic Fe Dispersed on N-Doped Carbon Hollow Nanospheres for High-Efficiency Electrocatalytic Oxygen Reduction. Chen Y; Li Z; Zhu Y; Sun D; Liu X; Xu L; Tang Y Adv Mater; 2019 Feb; 31(8):e1806312. PubMed ID: 30589127 [TBL] [Abstract][Full Text] [Related]
18. Atomically dispersed Mn atoms coordinated with N and O within an N-doped porous carbon framework for boosted oxygen reduction catalysis. Huo J; Cao X; Tian Y; Li L; Qu J; Xie Y; Nie X; Zhao Y; Zhang J; Liu H Nanoscale; 2023 Mar; 15(11):5448-5457. PubMed ID: 36852590 [TBL] [Abstract][Full Text] [Related]
19. Synergistic effect of Pt-Ni dual single-atoms and alloy nanoparticles as a high-efficiency electrocatalyst to minimize Pt utilization at cathode in polymer electrolyte membrane fuel cells. Duc Le T; Ahemad MJ; Kim DS; Lee BH; Oh GJ; Shin GS; Nagappagari LR; Dao V; Van Tran T; Yu YT J Colloid Interface Sci; 2023 Mar; 634():930-939. PubMed ID: 36566637 [TBL] [Abstract][Full Text] [Related]
20. Transition Metal and Nitrogen Co-Doped Carbon-based Electrocatalysts for the Oxygen Reduction Reaction: From Active Site Insights to the Rational Design of Precursors and Structures. Wang D; Pan X; Yang P; Li R; Xu H; Li Y; Meng F; Zhang J; An M ChemSusChem; 2021 Jan; 14(1):33-55. PubMed ID: 33078564 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]