These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 36692135)

  • 1. Binding peptide generation for MHC Class I proteins with deep reinforcement learning.
    Chen Z; Zhang B; Guo H; Emani P; Clancy T; Jiang C; Gerstein M; Ning X; Cheng C; Min MR
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36692135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico design of MHC class I high binding affinity peptides through motifs activation map.
    Xiao Z; Zhang Y; Yu R; Chen Y; Jiang X; Wang Z; Li S
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):516. PubMed ID: 30598069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ACME: pan-specific peptide-MHC class I binding prediction through attention-based deep neural networks.
    Hu Y; Wang Z; Hu H; Wan F; Chen L; Xiong Y; Wang X; Zhao D; Huang W; Zeng J
    Bioinformatics; 2019 Dec; 35(23):4946-4954. PubMed ID: 31120490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DeepLigand: accurate prediction of MHC class I ligands using peptide embedding.
    Zeng H; Gifford DK
    Bioinformatics; 2019 Jul; 35(14):i278-i283. PubMed ID: 31510651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting MHC-peptide binding affinity by differential boundary tree.
    Feng P; Zeng J; Ma J
    Bioinformatics; 2021 Jul; 37(Suppl_1):i254-i261. PubMed ID: 34252932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing High Binding Affinity Peptides for MHC Class I Using MAM: An In Silico Approach.
    Zhang YW
    Methods Mol Biol; 2024; 2809():263-274. PubMed ID: 38907903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BERTMHC: improved MHC-peptide class II interaction prediction with transformer and multiple instance learning.
    Cheng J; Bendjama K; Rittner K; Malone B
    Bioinformatics; 2021 Nov; 37(22):4172-4179. PubMed ID: 34096999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RPEMHC: improved prediction of MHC-peptide binding affinity by a deep learning approach based on residue-residue pair encoding.
    Wang X; Wu T; Jiang Y; Chen T; Pan D; Jin Z; Xie J; Quan L; Lyu Q
    Bioinformatics; 2024 Jan; 40(1):. PubMed ID: 38175759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GradDock: rapid simulation and tailored ranking functions for peptide-MHC Class I docking.
    Kyeong HH; Choi Y; Kim HS
    Bioinformatics; 2018 Feb; 34(3):469-476. PubMed ID: 28968726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PANDORA v2.0: Benchmarking peptide-MHC II models and software improvements.
    Parizi FM; Marzella DF; Ramakrishnan G; 't Hoen PAC; Karimi-Jafari MH; Xue LC
    Front Immunol; 2023; 14():1285899. PubMed ID: 38143769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeepMHCII: a novel binding core-aware deep interaction model for accurate MHC-II peptide binding affinity prediction.
    You R; Qu W; Mamitsuka H; Zhu S
    Bioinformatics; 2022 Jun; 38(Suppl 1):i220-i228. PubMed ID: 35758790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematically benchmarking peptide-MHC binding predictors: From synthetic to naturally processed epitopes.
    Zhao W; Sher X
    PLoS Comput Biol; 2018 Nov; 14(11):e1006457. PubMed ID: 30408041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DeepMHCI: an anchor position-aware deep interaction model for accurate MHC-I peptide binding affinity prediction.
    Qu W; You R; Mamitsuka H; Zhu S
    Bioinformatics; 2023 Sep; 39(9):. PubMed ID: 37669154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved pan-specific MHC class I peptide-binding predictions using a novel representation of the MHC-binding cleft environment.
    Carrasco Pro S; Zimic M; Nielsen M
    Tissue Antigens; 2014 Feb; 83(2):94-100. PubMed ID: 24447175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HLA class I binding prediction via convolutional neural networks.
    Vang YS; Xie X
    Bioinformatics; 2017 Sep; 33(17):2658-2665. PubMed ID: 28444127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction.
    Han Y; Kim D
    BMC Bioinformatics; 2017 Dec; 18(1):585. PubMed ID: 29281985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the structure of naturally processed peptides bound by class I and class II major histocompatibility complex molecules.
    Appella E; Padlan EA; Hunt DF
    EXS; 1995; 73():105-19. PubMed ID: 7579970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Throughput Prediction of MHC Class I and II Neoantigens with MHCnuggets.
    Shao XM; Bhattacharya R; Huang J; Sivakumar IKA; Tokheim C; Zheng L; Hirsch D; Kaminow B; Omdahl A; Bonsack M; Riemer AB; Velculescu VE; Anagnostou V; Pagel KA; Karchin R
    Cancer Immunol Res; 2020 Mar; 8(3):396-408. PubMed ID: 31871119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated benchmarking of peptide-MHC class I binding predictions.
    Trolle T; Metushi IG; Greenbaum JA; Kim Y; Sidney J; Lund O; Sette A; Peters B; Nielsen M
    Bioinformatics; 2015 Jul; 31(13):2174-81. PubMed ID: 25717196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MHCflurry 2.0: Improved Pan-Allele Prediction of MHC Class I-Presented Peptides by Incorporating Antigen Processing.
    O'Donnell TJ; Rubinsteyn A; Laserson U
    Cell Syst; 2020 Jul; 11(1):42-48.e7. PubMed ID: 32711842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.