These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 36692140)
1. BLTSA: pseudotime prediction for single cells by branched local tangent space alignment. Li L; Zhao Y; Li H; Zhang S Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36692140 [TBL] [Abstract][Full Text] [Related]
2. Single-cell RNA sequencing data analysis based on non-uniform ε-neighborhood network. Jia J; Chen L Bioinformatics; 2022 Apr; 38(9):2459-2465. PubMed ID: 35188181 [TBL] [Abstract][Full Text] [Related]
3. A robust and accurate single-cell data trajectory inference method using ensemble pseudotime. Zhang Y; Tran D; Nguyen T; Dascalu SM; Harris FC BMC Bioinformatics; 2023 Feb; 24(1):55. PubMed ID: 36803767 [TBL] [Abstract][Full Text] [Related]
4. Pseudotime Reconstruction Using TSCAN. Ji Z; Ji H Methods Mol Biol; 2019; 1935():115-124. PubMed ID: 30758823 [TBL] [Abstract][Full Text] [Related]
6. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering. Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596 [TBL] [Abstract][Full Text] [Related]
7. Unraveling the timeline of gene expression: A pseudotemporal trajectory analysis of single-cell RNA sequencing data. Cheng J; Smyth GK; Chen Y F1000Res; 2023; 12():684. PubMed ID: 37994351 [TBL] [Abstract][Full Text] [Related]
8. scShaper: an ensemble method for fast and accurate linear trajectory inference from single-cell RNA-seq data. Smolander J; Junttila S; Venäläinen MS; Elo LL Bioinformatics; 2022 Feb; 38(5):1328-1335. PubMed ID: 34888622 [TBL] [Abstract][Full Text] [Related]
9. scSTEM: clustering pseudotime ordered single-cell data. Song Q; Wang J; Bar-Joseph Z Genome Biol; 2022 Jul; 23(1):150. PubMed ID: 35799304 [TBL] [Abstract][Full Text] [Related]
10. Model-based branching point detection in single-cell data by K-branches clustering. Chlis NK; Wolf FA; Theis FJ Bioinformatics; 2017 Oct; 33(20):3211-3219. PubMed ID: 28582478 [TBL] [Abstract][Full Text] [Related]
11. scGAC: a graph attentional architecture for clustering single-cell RNA-seq data. Cheng Y; Ma X Bioinformatics; 2022 Apr; 38(8):2187-2193. PubMed ID: 35176138 [TBL] [Abstract][Full Text] [Related]
12. scGCL: an imputation method for scRNA-seq data based on graph contrastive learning. Xiong Z; Luo J; Shi W; Liu Y; Xu Z; Wang B Bioinformatics; 2023 Mar; 39(3):. PubMed ID: 36825817 [TBL] [Abstract][Full Text] [Related]
13. DIMM-SC: a Dirichlet mixture model for clustering droplet-based single cell transcriptomic data. Sun Z; Wang T; Deng K; Wang XF; Lafyatis R; Ding Y; Hu M; Chen W Bioinformatics; 2018 Jan; 34(1):139-146. PubMed ID: 29036318 [TBL] [Abstract][Full Text] [Related]
14. scNAME: neighborhood contrastive clustering with ancillary mask estimation for scRNA-seq data. Wan H; Chen L; Deng M Bioinformatics; 2022 Mar; 38(6):1575-1583. PubMed ID: 34999761 [TBL] [Abstract][Full Text] [Related]
15. Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge. Mukherjee S; Zhang Y; Fan J; Seelig G; Kannan S Bioinformatics; 2018 Jul; 34(13):i124-i132. PubMed ID: 29949988 [TBL] [Abstract][Full Text] [Related]
16. scCNC: a method based on capsule network for clustering scRNA-seq data. Wang HY; Zhao JP; Zheng CH; Su YS Bioinformatics; 2022 Aug; 38(15):3703-3709. PubMed ID: 35699473 [TBL] [Abstract][Full Text] [Related]
17. A machine learning-based method for automatically identifying novel cells in annotating single-cell RNA-seq data. Li Z; Wang Y; Ganan-Gomez I; Colla S; Do KA Bioinformatics; 2022 Oct; 38(21):4885-4892. PubMed ID: 36083008 [TBL] [Abstract][Full Text] [Related]
18. Entropy-based inference of transition states and cellular trajectory for single-cell transcriptomics. Gan Y; Guo C; Guo W; Xu G; Zou G Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35696651 [TBL] [Abstract][Full Text] [Related]
19. CStreet: a computed Cell State trajectory inference method for time-series single-cell RNA sequencing data. Zhao C; Xiu W; Hua Y; Zhang N; Zhang Y Bioinformatics; 2021 Nov; 37(21):3774-3780. PubMed ID: 34196686 [TBL] [Abstract][Full Text] [Related]
20. A statistical framework for differential pseudotime analysis with multiple single-cell RNA-seq samples. Hou W; Ji Z; Chen Z; Wherry EJ; Hicks SC; Ji H Nat Commun; 2023 Nov; 14(1):7286. PubMed ID: 37949861 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]