These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 36692152)

  • 1. Phosformer: an explainable transformer model for protein kinase-specific phosphorylation predictions.
    Zhou Z; Yeung W; Gravel N; Salcedo M; Soleymani S; Li S; Kannan N
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36692152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DeepKinZero: zero-shot learning for predicting kinase-phosphosite associations involving understudied kinases.
    Deznabi I; Arabaci B; Koyutürk M; Tastan O
    Bioinformatics; 2020 Jun; 36(12):3652-3661. PubMed ID: 32044914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A resource database for protein kinase substrate sequence-preference motifs based on large-scale mass spectrometry data.
    Poll BG; Leo KT; Deshpande V; Jayatissa N; Pisitkun T; Park E; Yang CR; Raghuram V; Knepper MA
    Cell Commun Signal; 2024 Feb; 22(1):137. PubMed ID: 38374071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. KinScan: AI-based rapid profiling of activity across the kinome.
    Brahma R; Shin JM; Cho KH
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37985454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A multimodal Transformer Network for protein-small molecule interactions enhances predictions of kinase inhibition and enzyme-substrate relationships.
    Kroll A; Ranjan S; Lercher MJ
    PLoS Comput Biol; 2024 May; 20(5):e1012100. PubMed ID: 38768223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DF-Phos: Prediction of Protein Phosphorylation Sites by Deep Forest.
    Zahiri Z; Mehrshad N; Mehrshad M
    J Biochem; 2024 Mar; 175(4):447-456. PubMed ID: 38153271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of 492 human protein kinase substrate specificities.
    Safaei J; Maňuch J; Gupta A; Stacho L; Pelech S
    Proteome Sci; 2011 Oct; 9 Suppl 1(Suppl 1):S6. PubMed ID: 22165948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DL-SPhos: Prediction of serine phosphorylation sites using transformer language model.
    Shrestha P; Kandel J; Tayara H; Chong KT
    Comput Biol Med; 2024 Feb; 169():107925. PubMed ID: 38183701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing predictions of protein stability changes induced by single mutations using MSA-based Language Models.
    Cuturello F; Celoria M; Ansuini A; Cazzaniga A
    Bioinformatics; 2024 Jul; ():. PubMed ID: 39012369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CoPhosK: A method for comprehensive kinase substrate annotation using co-phosphorylation analysis.
    Ayati M; Wiredja D; Schlatzer D; Maxwell S; Li M; Koyutürk M; Chance MR
    PLoS Comput Biol; 2019 Feb; 15(2):e1006678. PubMed ID: 30811403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tyr352 as a Predominant Phosphosite in the Understudied Kinase and Molecular Target, HIPK1: Implications for Cancer Therapy.
    Sanjeev D; George M; John L; Gopalakrishnan AP; Priyanka P; Mendon S; Yandigeri T; Nisar M; Nisar M; Kanekar S; Balaya RDA; Raju R
    OMICS; 2024 Mar; 28(3):111-124. PubMed ID: 38498023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinome-wide identification of phosphorylation networks in eukaryotic proteomes.
    Parca L; Ariano B; Cabibbo A; Paoletti M; Tamburrini A; Palmeri A; Ausiello G; Helmer-Citterich M
    Bioinformatics; 2019 Feb; 35(3):372-379. PubMed ID: 30016513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PTransIPs: Identification of Phosphorylation Sites Enhanced by Protein PLM Embeddings.
    Xu Z; Zhong H; He B; Wang X; Lu T
    IEEE J Biomed Health Inform; 2024 Jun; 28(6):3762-3771. PubMed ID: 38483806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HemoDL: Hemolytic peptides prediction by double ensemble engines from Rich sequence-derived and transformer-enhanced information.
    Yang S; Xu P
    Anal Biochem; 2024 Jul; 690():115523. PubMed ID: 38552762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TemBERTure: advancing protein thermostability prediction with deep learning and attention mechanisms.
    Rodella C; Lazaridi S; Lemmin T
    Bioinform Adv; 2024; 4(1):vbae103. PubMed ID: 39040220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphoproteomics data-driven signalling network inference: Does it work?
    Sriraja LO; Werhli A; Petsalaki E
    Comput Struct Biotechnol J; 2023; 21():432-443. PubMed ID: 36618990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. D-SCRIPT translates genome to phenome with sequence-based, structure-aware, genome-scale predictions of protein-protein interactions.
    Sledzieski S; Singh R; Cowen L; Berger B
    Cell Syst; 2021 Oct; 12(10):969-982.e6. PubMed ID: 34536380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying Protein Phosphorylation Site-Disease Associations Based on Multi-Similarity Fusion and Negative Sample Selection by Convolutional Neural Network.
    Deng Q; Zhang J; Liu J; Liu Y; Dai Z; Zou X; Li Z
    Interdiscip Sci; 2024 Mar; ():. PubMed ID: 38457108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using explainable machine learning to uncover the kinase-substrate interaction landscape.
    Zhou Z; Yeung W; Soleymani S; Gravel N; Salcedo M; Li S; Kannan N
    Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38244571
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.