BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36692159)

  • 1. Differentiating Magnetic Resonance Images of Pyogenic Spondylitis and Spinal Modic Change Using a Convolutional Neural Network.
    Mukaihata T; Maki S; Eguchi Y; Geundong K; Shoda J; Yokota H; Orita S; Shiga Y; Inage K; Furuya T; Ohtori S
    Spine (Phila Pa 1976); 2023 Feb; 48(4):288-294. PubMed ID: 36692159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Deep Convolutional Neural Network With Performance Comparable to Radiologists for Differentiating Between Spinal Schwannoma and Meningioma.
    Maki S; Furuya T; Horikoshi T; Yokota H; Mori Y; Ota J; Kawasaki Y; Miyamoto T; Norimoto M; Okimatsu S; Shiga Y; Inage K; Orita S; Takahashi H; Suyari H; Uno T; Ohtori S
    Spine (Phila Pa 1976); 2020 May; 45(10):694-700. PubMed ID: 31809468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated Differentiation Between Osteoporotic Vertebral Fracture and Malignant Vertebral Fracture on MRI Using a Deep Convolutional Neural Network.
    Yoda T; Maki S; Furuya T; Yokota H; Matsumoto K; Takaoka H; Miyamoto T; Okimatsu S; Shiga Y; Inage K; Orita S; Eguchi Y; Yamashita T; Masuda Y; Uno T; Ohtori S
    Spine (Phila Pa 1976); 2022 Apr; 47(8):E347-E352. PubMed ID: 34919075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of the deep convolutional neural network based magnetic resonance image scoring algorithm for differentiating between tuberculous and pyogenic spondylitis.
    Kim K; Kim S; Lee YH; Lee SH; Lee HS; Kim S
    Sci Rep; 2018 Sep; 8(1):13124. PubMed ID: 30177857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benign vs malignant vertebral compression fractures with MRI: a comparison between automatic deep learning network and radiologist's assessment.
    Liu B; Jin Y; Feng S; Yu H; Zhang Y; Li Y
    Eur Radiol; 2023 Jul; 33(7):5060-5068. PubMed ID: 37162531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Convolutional neural network-based magnetic resonance image differentiation of filum terminale ependymomas from schwannomas.
    Gu Z; Dai W; Chen J; Jiang Q; Lin W; Wang Q; Chen J; Gu C; Li J; Ying G; Zhu Y
    BMC Cancer; 2024 Mar; 24(1):350. PubMed ID: 38504164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differentiation of Glioma Mimicking Encephalitis and Encephalitis Using Multiparametric MR-Based Deep Learning.
    Wu W; Li J; Ye J; Wang Q; Zhang W; Xu S
    Front Oncol; 2021; 11():639062. PubMed ID: 33791225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer-aided hepatocellular carcinoma detection on the hepatobiliary phase of gadoxetic acid-enhanced magnetic resonance imaging using a convolutional neural network: Feasibility evaluation with multi-sequence data.
    Cho Y; Han YE; Kim MJ; Park BJ; Sim KC; Sung DJ; Han NY; Park YS
    Comput Methods Programs Biomed; 2022 Oct; 225():107032. PubMed ID: 35930863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using artificial intelligence to diagnose fresh osteoporotic vertebral fractures on magnetic resonance images.
    Yabu A; Hoshino M; Tabuchi H; Takahashi S; Masumoto H; Akada M; Morita S; Maeno T; Iwamae M; Inose H; Kato T; Yoshii T; Tsujio T; Terai H; Toyoda H; Suzuki A; Tamai K; Ohyama S; Hori Y; Okawa A; Nakamura H
    Spine J; 2021 Oct; 21(10):1652-1658. PubMed ID: 33722728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detecting ossification of the posterior longitudinal ligament on plain radiographs using a deep convolutional neural network: a pilot study.
    Ogawa T; Yoshii T; Oyama J; Sugimura N; Akada T; Sugino T; Hashimoto M; Morishita S; Takahashi T; Motoyoshi T; Oyaizu T; Yamada T; Onuma H; Hirai T; Inose H; Nakajima Y; Okawa A
    Spine J; 2022 Jun; 22(6):934-940. PubMed ID: 35017056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Success of Deep Learning Modalities in Evaluating Modic Changes.
    Yüksek M; Yokuş A; Arslan H; Canayaz M; Akdemir Z
    World Neurosurg; 2024 Apr; 184():e354-e359. PubMed ID: 38296043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preoperative Prediction of Axillary Lymph Node Metastasis in Breast Cancer Using CNN Based on Multiparametric MRI.
    Wang Z; Sun H; Li J; Chen J; Meng F; Li H; Han L; Zhou S; Yu T
    J Magn Reson Imaging; 2022 Sep; 56(3):700-709. PubMed ID: 35108415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting Distal Radial Fractures from Wrist Radiographs Using a Deep Convolutional Neural Network with an Accuracy Comparable to Hand Orthopedic Surgeons.
    Suzuki T; Maki S; Yamazaki T; Wakita H; Toguchi Y; Horii M; Yamauchi T; Kawamura K; Aramomi M; Sugiyama H; Matsuura Y; Yamashita T; Orita S; Ohtori S
    J Digit Imaging; 2022 Feb; 35(1):39-46. PubMed ID: 34913132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Convolutional neural network for discriminating nasopharyngeal carcinoma and benign hyperplasia on MRI.
    Wong LM; King AD; Ai QYH; Lam WKJ; Poon DMC; Ma BBY; Chan KCA; Mo FKF
    Eur Radiol; 2021 Jun; 31(6):3856-3863. PubMed ID: 33241522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A deep neural network for MRI spinal inflammation in axial spondyloarthritis.
    Lin Y; Chan SCW; Chung HY; Lee KH; Cao P
    Eur Spine J; 2024 Jan; ():. PubMed ID: 38190004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Relationship Between MRI Signal Intensity Changes, Clinical Presentation, and Surgical Outcome in Degenerative Cervical Myelopathy: Analysis of a Global Cohort.
    Nouri A; Martin AR; Kato S; Reihani-Kermani H; Riehm LE; Fehlings MG
    Spine (Phila Pa 1976); 2017 Dec; 42(24):1851-1858. PubMed ID: 28498290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Learning for Automatic Differential Diagnosis of Primary Central Nervous System Lymphoma and Glioblastoma: Multi-Parametric Magnetic Resonance Imaging Based Convolutional Neural Network Model.
    Xia W; Hu B; Li H; Shi W; Tang Y; Yu Y; Geng C; Wu Q; Yang L; Yu Z; Geng D; Li Y
    J Magn Reson Imaging; 2021 Sep; 54(3):880-887. PubMed ID: 33694250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Application of convolutional neural network to risk evaluation of positive circumferential resection margin of rectal cancer by magnetic resonance imaging].
    Xu JH; Zhou XM; Ma JL; Liu SS; Zhang MS; Zheng XF; Zhang XY; Liu GW; Zhang XX; Lu Y; Wang DS
    Zhonghua Wei Chang Wai Ke Za Zhi; 2020 Jun; 23(6):572-577. PubMed ID: 32521977
    [No Abstract]   [Full Text] [Related]  

  • 19. Deep learning to differentiate parkinsonian disorders separately using single midsagittal MR imaging: a proof of concept study.
    Kiryu S; Yasaka K; Akai H; Nakata Y; Sugomori Y; Hara S; Seo M; Abe O; Ohtomo K
    Eur Radiol; 2019 Dec; 29(12):6891-6899. PubMed ID: 31264017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MR imaging of infectious spondylitis.
    Thrush A; Enzmann D
    AJNR Am J Neuroradiol; 1990; 11(6):1171-80. PubMed ID: 2124051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.