BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 36692216)

  • 1. Merging Copper(I) Photoredox Catalysis and Iodine(III) Chemistry for the Oxy-monofluoromethylation of Alkenes.
    Ramkumar N; Baumane L; Zacs D; Veliks J
    Angew Chem Int Ed Engl; 2023 Mar; 62(12):e202219027. PubMed ID: 36692216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. When Light Meets Nitrogen-Centered Radicals: From Reagents to Catalysts.
    Yu XY; Zhao QQ; Chen J; Xiao WJ; Chen JR
    Acc Chem Res; 2020 May; 53(5):1066-1083. PubMed ID: 32286794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Merging Visible Light Photoredox and Gold Catalysis.
    Hopkinson MN; Tlahuext-Aca A; Glorius F
    Acc Chem Res; 2016 Oct; 49(10):2261-2272. PubMed ID: 27610939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Synthetic Applications of the Hypervalent Iodine(III) Reagents in Visible-Light-Induced Photoredox Catalysis.
    Chen C; Wang X; Yang T
    Front Chem; 2020; 8():551159. PubMed ID: 33173767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visible Light-Mediated Monofluoromethylation/Acylation of Olefins by Dual Organo-Catalysis.
    Xia J; Guo Y; Lv Z; Sun J; Zheng G; Zhang Q
    Molecules; 2024 Feb; 29(4):. PubMed ID: 38398543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual Hypervalent Iodine(III) Reagents and Photoredox Catalysis Enable Decarboxylative Ynonylation under Mild Conditions.
    Huang H; Zhang G; Chen Y
    Angew Chem Int Ed Engl; 2015 Jun; 54(27):7872-6. PubMed ID: 26014919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypervalent iodine reagents enable chemoselective deboronative/decarboxylative alkenylation by photoredox catalysis.
    Huang H; Jia K; Chen Y
    Angew Chem Int Ed Engl; 2015 Feb; 54(6):1881-4. PubMed ID: 25504966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser Flash Photolysis Studies on Radical Monofluoromethylation by (Diarylamino)naphthalene Photoredox Catalysis: Long Lifetime of the Excited State is Not Always a Requisite.
    Noto N; Takahashi K; Goryo S; Takakado A; Iwata K; Koike T; Akita M
    J Org Chem; 2020 Oct; 85(20):13220-13227. PubMed ID: 33026810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atom-Transfer Radical Addition to Unactivated Alkenes by using Heterogeneous Visible-Light Photocatalysis.
    Mao LL; Cong H
    ChemSusChem; 2017 Nov; 10(22):4461-4464. PubMed ID: 28887830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Divergent Access to (1,1) and (1,2)-Azidolactones from Alkenes using Hypervalent Iodine Reagents.
    Alazet S; Le Vaillant F; Nicolai S; Courant T; Waser J
    Chemistry; 2017 Jul; 23(40):9501-9504. PubMed ID: 28605075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-Component Aminoarylation of Electron-Rich Alkenes by Merging Photoredox with Nickel Catalysis.
    Jiang H; Yu X; Daniliuc CG; Studer A
    Angew Chem Int Ed Engl; 2021 Jun; 60(26):14399-14404. PubMed ID: 33871137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acyl Radical Chemistry via Visible-Light Photoredox Catalysis.
    Banerjee A; Lei Z; Ngai MY
    Synthesis (Stuttg); 2019 Jan; 51(2):303-333. PubMed ID: 31057188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excited-State Copper Catalysis for the Synthesis of Heterocycles.
    Banerjee A; Sarkar S; Shah JA; Frederiks NC; Bazan-Bergamino EA; Johnson CJ; Ngai MY
    Angew Chem Int Ed Engl; 2022 Jan; 61(4):e202113841. PubMed ID: 34783154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic and Mechanistic Implications of Chlorine Photoelimination in Nickel/Photoredox C(sp
    Kariofillis SK; Doyle AG
    Acc Chem Res; 2021 Feb; 54(4):988-1000. PubMed ID: 33511841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclic Hypervalent Iodine Reagents: Enabling Tools for Bond Disconnection via Reactivity Umpolung.
    Hari DP; Caramenti P; Waser J
    Acc Chem Res; 2018 Dec; 51(12):3212-3225. PubMed ID: 30485071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iodine(III) Reagents in Radical Chemistry.
    Wang X; Studer A
    Acc Chem Res; 2017 Jul; 50(7):1712-1724. PubMed ID: 28636313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic Asymmetric Synthesis of Fluoroalkyl-Containing Compounds by Three-Component Photoredox Chemistry.
    Ma J; Xie X; Meggers E
    Chemistry; 2018 Jan; 24(1):259-265. PubMed ID: 29105857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visible-Light-Induced, Catalyst-Free Monofluoromethyl Sulfonylation of Alkenes with Iodine(III) Reagent and DABSO.
    Ye ZP; Yang JS; Yang SJ; Guo M; Yuan CP; Ye YQ; Chen HB; Xiang HY; Chen K; Yang H
    Org Lett; 2023 Sep; 25(38):7062-7066. PubMed ID: 37726866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radical Aza-Cyclization of α-Imino-oxy Acids for Synthesis of Alkene-Containing
    Tu JL; Liu JL; Tang W; Su M; Liu F
    Org Lett; 2020 Feb; 22(3):1222-1226. PubMed ID: 31984754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Merging Photoredox with Copper Catalysis: Decarboxylative Alkynylation of α-Amino Acid Derivatives.
    Zhang H; Zhang P; Jiang M; Yang H; Fu H
    Org Lett; 2017 Mar; 19(5):1016-1019. PubMed ID: 28198184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.