These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 36692674)

  • 1. Multi-omics assisted breeding for biotic stress resistance in soybean.
    Bisht A; Saini DK; Kaur B; Batra R; Kaur S; Kaur I; Jindal S; Malik P; Sandhu PK; Kaur A; Gill BS; Wani SH; Kaur B; Mir RR; Sandhu KS; Siddique KHM
    Mol Biol Rep; 2023 Apr; 50(4):3787-3814. PubMed ID: 36692674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in genomic, transcriptomic, proteomic, and metabolomic approaches to study biotic stress in fruit crops.
    Li T; Wang YH; Liu JX; Feng K; Xu ZS; Xiong AS
    Crit Rev Biotechnol; 2019 Aug; 39(5):680-692. PubMed ID: 31068014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-Omics Pipeline and Omics-Integration Approach to Decipher Plant's Abiotic Stress Tolerance Responses.
    Roychowdhury R; Das SP; Gupta A; Parihar P; Chandrasekhar K; Sarker U; Kumar A; Ramrao DP; Sudhakar C
    Genes (Basel); 2023 Jun; 14(6):. PubMed ID: 37372461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in omics research on peanut response to biotic stresses.
    Huang R; Li H; Gao C; Yu W; Zhang S
    Front Plant Sci; 2023; 14():1101994. PubMed ID: 37284721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applications of Multi-Omics Technologies for Crop Improvement.
    Yang Y; Saand MA; Huang L; Abdelaal WB; Zhang J; Wu Y; Li J; Sirohi MH; Wang F
    Front Plant Sci; 2021; 12():563953. PubMed ID: 34539683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-omics approaches for strategic improvement of stress tolerance in underutilized crop species: A climate change perspective.
    Muthamilarasan M; Singh NK; Prasad M
    Adv Genet; 2019; 103():1-38. PubMed ID: 30904092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in Multi-Omics Approaches for Molecular Breeding of Black Rot Resistance in
    Shaw RK; Shen Y; Wang J; Sheng X; Zhao Z; Yu H; Gu H
    Front Plant Sci; 2021; 12():742553. PubMed ID: 34938304
    [No Abstract]   [Full Text] [Related]  

  • 8. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Singh D; Chaudhary P; Taunk J; Singh CK; Singh D; Tomar RSS; Aski M; Konjengbam NS; Raje RS; Singh S; Sengar RS; Yadav RK; Pal M
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-Omics Techniques for Soybean Molecular Breeding.
    Cao P; Zhao Y; Wu F; Xin D; Liu C; Wu X; Lv J; Chen Q; Qi Z
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Omics Path to Increasing Productivity in Less-Studied Crops Under Changing Climate-Lentil a Case Study.
    Tiwari M; Singh B; Min D; Jagadish SVK
    Front Plant Sci; 2022; 13():813985. PubMed ID: 35615121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated omics approaches for flax improvement under abiotic and biotic stress: Current status and future prospects.
    Yadav B; Kaur V; Narayan OP; Yadav SK; Kumar A; Wankhede DP
    Front Plant Sci; 2022; 13():931275. PubMed ID: 35958216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomics Enabled Breeding Strategies for Major Biotic Stresses in Pea (
    Parihar AK; Kumar J; Gupta DS; Lamichaney A; Naik Sj S; Singh AK; Dixit GP; Gupta S; Toklu F
    Front Plant Sci; 2022; 13():861191. PubMed ID: 35665148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current Progress, Applications and Challenges of Multi-Omics Approaches in Sesame Genetic Improvement.
    Li H; Tahir Ul Qamar M; Yang L; Liang J; You J; Wang L
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating omic approaches for abiotic stress tolerance in soybean.
    Deshmukh R; Sonah H; Patil G; Chen W; Prince S; Mutava R; Vuong T; Valliyodan B; Nguyen HT
    Front Plant Sci; 2014; 5():244. PubMed ID: 24917870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Omics Approaches for Engineering Wheat Production under Abiotic Stresses.
    Shah T; Xu J; Zou X; Cheng Y; Nasir M; Zhang X
    Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30110906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QTL Analysis of Resistance to High-Intensity UV-B Irradiation in Soybean (
    Yoon MY; Kim MY; Ha J; Lee T; Kim KD; Lee SH
    Int J Mol Sci; 2019 Jul; 20(13):. PubMed ID: 31277435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comprehensive and conceptual overview of omics-based approaches for enhancing the resilience of vegetable crops against abiotic stresses.
    Mangal V; Lal MK; Tiwari RK; Altaf MA; Sood S; Gahlaut V; Bhatt A; Thakur AK; Kumar R; Bhardwaj V; Kumar V; Singh B; Singh R; Kumar D
    Planta; 2023 Mar; 257(4):80. PubMed ID: 36913037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional genomics of soybean for improvement of productivity in adverse conditions.
    Tran LS; Mochida K
    Funct Integr Genomics; 2010 Nov; 10(4):447-62. PubMed ID: 20582712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 'Omics' techniques for identifying flooding-response mechanisms in soybean.
    Komatsu S; Shirasaka N; Sakata K
    J Proteomics; 2013 Nov; 93():169-78. PubMed ID: 23313220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.