BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 36692693)

  • 21. Estimating climate change, CO2 and technology development effects on wheat yield in northeast Iran.
    Bannayan M; Mansoori H; Rezaei EE
    Int J Biometeorol; 2014 Apr; 58(3):395-405. PubMed ID: 23397072
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of wind speed variation on rainfed wheat production evaluated by the CERES-Wheat model.
    Araghi A; Maghrebi M; Olesen JE
    Int J Biometeorol; 2022 Jan; 66(1):225-233. PubMed ID: 34741663
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling future water footprint of barley production in Alberta, Canada: Implications for water use and yields to 2064.
    Masud MB; McAllister T; Cordeiro MRC; Faramarzi M
    Sci Total Environ; 2018 Mar; 616-617():208-222. PubMed ID: 29112843
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment of climate change impact on the water footprint in rice production: Historical simulation and future projections at two representative rice cropping sites of China.
    Zheng J; Wang W; Ding Y; Liu G; Xing W; Cao X; Chen D
    Sci Total Environ; 2020 Mar; 709():136190. PubMed ID: 31887505
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of climate change impacts and adaptation strategies on rainfed rice production in Songkhram River Basin, Thailand.
    Boonwichai S; Shrestha S; Babel MS; Weesakul S; Datta A
    Sci Total Environ; 2019 Feb; 652():189-201. PubMed ID: 30366320
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Global insight into understanding wheat yield and production through Agro-Ecological Zoning.
    Dadrasi A; Chaichi M; Nehbandani A; Soltani E; Nemati A; Salmani F; Heydari M; Yousefi AR
    Sci Rep; 2023 Sep; 13(1):15898. PubMed ID: 37741907
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantifying the impact of climate change on crop yield and water footprint of rice in the Nam Oon Irrigation Project, Thailand.
    Shrestha S; Chapagain R; Babel MS
    Sci Total Environ; 2017 Dec; 599-600():689-699. PubMed ID: 28494294
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Global implications of regional grain production through virtual water trade.
    Masud MB; Wada Y; Goss G; Faramarzi M
    Sci Total Environ; 2019 Apr; 659():807-820. PubMed ID: 31096411
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessing climate change impacts on water resources and crop yield: a case study of Varamin plain basin, Iran.
    Shahvari N; Khalilian S; Mosavi SH; Mortazavi SA
    Environ Monit Assess; 2019 Feb; 191(3):134. PubMed ID: 30729375
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Global relevance of Argentinean rainfed crops in a climatic variability context: A water footprint assessment in Buenos Aires province.
    Rodríguez CI; Arrien MM; Silva SH; Aldaya MM
    Sci Total Environ; 2024 Jun; 927():171946. PubMed ID: 38527551
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling the impacts of climate change and technical progress on the wheat yield in inland China: An autoregressive distributed lag approach.
    Zhai S; Song G; Qin Y; Ye X; Lee J
    PLoS One; 2017; 12(9):e0184474. PubMed ID: 28950027
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Climate-associated major food crops production change under multi-scenario in China.
    Liu Y; Zhang J; Pan T; Chen Q; Qin Y; Ge Q
    Sci Total Environ; 2022 Mar; 811():151393. PubMed ID: 34748850
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Future climate change impacts on wheat grain yield and protein in the North China Region.
    Zhang D; Liu J; Li D; Batchelor WD; Wu D; Zhen X; Ju H
    Sci Total Environ; 2023 Dec; 902():166147. PubMed ID: 37562625
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A framework for assessing the impacts of land-use/cover change and climate change on wheat productivity under 1.5 and 2.0 °C warming at watershed scale.
    Sun H; Wang L
    J Sci Food Agric; 2024 Apr; 104(6):3517-3531. PubMed ID: 38146054
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessing climate change impacts on pearl millet under arid and semi-arid environments using CSM-CERES-Millet model.
    Ullah A; Ahmad I; Ahmad A; Khaliq T; Saeed U; M Habib-Ur-Rahman ; Hussain J; Ullah S; Hoogenboom G
    Environ Sci Pollut Res Int; 2019 Mar; 26(7):6745-6757. PubMed ID: 30632035
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ecological footprints of environmental resources for agricultural production in Iran: a model-based study.
    Soltani E; Soltani A; Alimagham M; Zand E
    Environ Sci Pollut Res Int; 2021 Dec; 28(48):68972-68981. PubMed ID: 34282550
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effectiveness of time of sowing and cultivar choice for managing climate change: wheat crop phenology and water use efficiency.
    Luo Q; O'Leary G; Cleverly J; Eamus D
    Int J Biometeorol; 2018 Jun; 62(6):1049-1061. PubMed ID: 29423733
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regional inequalities of future climate change impact on rice (Oryza sativa L.) yield in China.
    Zhan P; Zhu W; Zhang T; Li N
    Sci Total Environ; 2023 Nov; 898():165495. PubMed ID: 37451446
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predicting the effects of climate change on physiological parameters determining wheat yield in 2050 (case study: Golestan Province, Iran).
    Abshenas M; Kamkar B; Soltani A; Kazemi H
    Environ Monit Assess; 2022 Sep; 194(10):734. PubMed ID: 36068442
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Australian wheat production expected to decrease by the late 21st century.
    Wang B; Liu L; O'Leary GJ; Asseng S; Macadam I; Lines-Kelly R; Yang X; Clark A; Crean J; Sides T; Xing H; Mi C; Yu Q
    Glob Chang Biol; 2018 Jun; 24(6):2403-2415. PubMed ID: 29284201
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.