These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36693010)

  • 1. Facile Microembossing Process for Microchannel Fabrication for Nanocellulose-Paper-Based Microfluidics.
    Yuan W; Yuan H; Jiao K; Zhu J; Lim EG; Mitrovic I; Duan S; Wang Y; Cong S; Zhao C; Sun J; Liu X; Song P
    ACS Appl Mater Interfaces; 2023 Feb; 15(5):6420-6430. PubMed ID: 36693010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microembossing: A Convenient Process for Fabricating Microchannels on Nanocellulose Paper-Based Microfluidics.
    Yuan W; Yuan H; Duan S; Yong R; Zhu J; Lim EG; Mitrovic I; Song P
    J Vis Exp; 2023 Oct; (200):. PubMed ID: 37870309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NanoPADs and nanoFACEs: an optically transparent nanopaper-based device for biomedical applications.
    Ying B; Park S; Chen L; Dong X; Young EWK; Liu X
    Lab Chip; 2020 Sep; 20(18):3322-3333. PubMed ID: 32766659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A SERS nanocellulose-paper-based analytical device for ultrasensitive detection of Alzheimer's disease.
    Yuan W; Yuan H; Li R; Yong R; Mitrovic I; Lim EG; Duan S; Song P
    Anal Chim Acta; 2024 May; 1301():342447. PubMed ID: 38553119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Room-Temperature Fabrication of High-Performance Amorphous In-Ga-Zn-O/Al
    Ning H; Zeng Y; Kuang Y; Zheng Z; Zhou P; Yao R; Zhang H; Bao W; Chen G; Fang Z; Peng J
    ACS Appl Mater Interfaces; 2017 Aug; 9(33):27792-27800. PubMed ID: 28767216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lab-on-nanopaper: An optical sensing bioplatform based on curcumin embedded in bacterial nanocellulose as an albumin assay kit.
    Naghdi T; Golmohammadi H; Vosough M; Atashi M; Saeedi I; Maghsoudi MT
    Anal Chim Acta; 2019 Sep; 1070():104-111. PubMed ID: 31103163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of Paper-Based Microfluidics by Spray on Printed Paper.
    Juang YJ; Hsu SK
    Polymers (Basel); 2022 Feb; 14(3):. PubMed ID: 35160629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of Nanopaper for Colorimetric Food Spoilage Indication.
    Al Tamimi Z; Chen L; Ji X; Vanderlaan G; Gacura MD; Piovesan D
    Polymers (Basel); 2023 Jul; 15(14):. PubMed ID: 37514487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellulose Nanopaper: Fabrication, Functionalization, and Applications.
    Liu W; Liu K; Du H; Zheng T; Zhang N; Xu T; Pang B; Zhang X; Si C; Zhang K
    Nanomicro Lett; 2022 Apr; 14(1):104. PubMed ID: 35416525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical Modification of Cellulose Nanofibers for the Production of Highly Thermal Resistant and Optically Transparent Nanopaper for Paper Devices.
    Yagyu H; Saito T; Isogai A; Koga H; Nogi M
    ACS Appl Mater Interfaces; 2015 Oct; 7(39):22012-7. PubMed ID: 26402324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanopaper as an Optical Sensing Platform.
    Morales-Narváez E; Golmohammadi H; Naghdi T; Yousefi H; Kostiv U; Horák D; Pourreza N; Merkoçi A
    ACS Nano; 2015 Jul; 9(7):7296-305. PubMed ID: 26135050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of transparent and superhydrophobic nanopaper via coating hybrid SiO
    Shi C; Wu Z; Xu J; Wu Q; Li D; Chen G; He M; Tian J
    Carbohydr Polym; 2019 Dec; 225():115229. PubMed ID: 31521295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micropatterning Silver Nanowire Networks on Cellulose Nanopaper for Transparent Paper Electronics.
    Kim D; Ko Y; Kwon G; Kim UJ; You J
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):38517-38525. PubMed ID: 30360060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible, highly transparent and iridescent all-cellulose hybrid nanopaper with enhanced mechanical strength and writable surface.
    Xiong R; Han Y; Wang Y; Zhang W; Zhang X; Lu C
    Carbohydr Polym; 2014 Nov; 113():264-71. PubMed ID: 25256484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and applications of transparent conductive nanocellulose paper.
    Li S; Lee PS
    Sci Technol Adv Mater; 2017; 18(1):620-633. PubMed ID: 28970870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clearly Transparent Nanopaper from Highly Concentrated Cellulose Nanofiber Dispersion Using Dilution and Sonication.
    Kasuga T; Isobe N; Yagyu H; Koga H; Nogi M
    Nanomaterials (Basel); 2018 Feb; 8(2):. PubMed ID: 29439544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-Step Hot Microembossing for Fabrication of Paper-Based Microfluidic Chips in 10 Seconds.
    Juang YJ; Wang Y; Hsu SK
    Polymers (Basel); 2020 Oct; 12(11):. PubMed ID: 33120953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution-processed assembly of ultrathin transparent conductive cellulose nanopaper embedding AgNWs.
    Song Y; Jiang Y; Shi L; Cao S; Feng X; Miao M; Fang J
    Nanoscale; 2015 Aug; 7(32):13694-701. PubMed ID: 26214378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A nanopaper-based artificial tongue: a ratiometric fluorescent sensor array on bacterial nanocellulose for chemical discrimination applications.
    Abbasi-Moayed S; Golmohammadi H; Hormozi-Nezhad MR
    Nanoscale; 2018 Feb; 10(5):2492-2502. PubMed ID: 29340401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tailoring water stability of cellulose nanopaper by surface functionalization.
    Operamolla A; Casalini S; Console D; Capodieci L; Di Benedetto F; Bianco GV; Babudri F
    Soft Matter; 2018 Sep; 14(36):7390-7400. PubMed ID: 30198543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.