These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 36693276)

  • 1. Degenerate parametric down-conversion facilitated by exciton-plasmon polariton states in a nonlinear plasmonic cavity.
    Piryatinski A; Sukharev M
    Nanotechnology; 2023 Feb; 34(17):. PubMed ID: 36693276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Second-harmonic generation in nonlinear plasmonic lattices enhanced by quantum emitter gain medium.
    Sukharev M; Roslyak O; Piryatinski A
    J Chem Phys; 2021 Feb; 154(8):084703. PubMed ID: 33639729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exciton-Plasmon Energy Exchange Drives the Transition to a Strong Coupling Regime.
    Shahbazyan TV
    Nano Lett; 2019 May; 19(5):3273-3279. PubMed ID: 30973738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coherent perfect absorption in Tavis-Cummings models.
    Wang Z; Khatiwada P; Wang D; Mirza IM
    Opt Express; 2022 Mar; 30(6):9360-9379. PubMed ID: 35299366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strong plasmon-exciton coupling in transition metal dichalcogenides and plasmonic nanostructures.
    Sun J; Li Y; Hu H; Chen W; Zheng D; Zhang S; Xu H
    Nanoscale; 2021 Mar; 13(8):4408-4419. PubMed ID: 33605947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear Emission of Molecular Ensembles Strongly Coupled to Plasmonic Lattices with Structural Imperfections.
    Ramezani M; Le-Van Q; Halpin A; Gómez Rivas J
    Phys Rev Lett; 2018 Dec; 121(24):243904. PubMed ID: 30608720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-Matter Interaction and Lasing in Lead Halide Perovskites.
    Schlaus AP; Spencer MS; Zhu XY
    Acc Chem Res; 2019 Oct; 52(10):2950-2959. PubMed ID: 31571486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum Symmetry Breaking of Exciton/Polaritons in a Metal-Nanorod Plasmonic Array.
    Zaster S; Bittner ER; Piryatinski A
    J Phys Chem A; 2016 May; 120(19):3109-16. PubMed ID: 26905014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-confined Propagating Exciton-Plasmon Polaritons Enabled by Cavity-Free Strong Coupling: Beating Plasmonic Trade-Offs.
    Wang Y; Luo A; Zhu C; Li Z; Wu X
    Nanoscale Res Lett; 2022 Nov; 17(1):109. PubMed ID: 36399213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of Coherently Coupled Exciton Polaritons in Monolayer Tungsten Disulphide.
    Liu X; Bao W; Li Q; Ropp C; Wang Y; Zhang X
    Phys Rev Lett; 2017 Jul; 119(2):027403. PubMed ID: 28753353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum Yield of Single Surface Plasmons Generated by a Quantum Dot Coupled with a Silver Nanowire.
    Li Q; Wei H; Xu H
    Nano Lett; 2015 Dec; 15(12):8181-7. PubMed ID: 26583200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmon-induced coherence, exciton-induced transparency, and Fano interference for hybrid plasmonic systems in strong coupling regime.
    Scott Z; Muhammad S; Shahbazyan TV
    J Chem Phys; 2022 May; 156(19):194702. PubMed ID: 35597643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear optics in the fractional quantum Hall regime.
    Knüppel P; Ravets S; Kroner M; Fält S; Wegscheider W; Imamoglu A
    Nature; 2019 Aug; 572(7767):91-94. PubMed ID: 31285587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation and Active Control of a Collective Polariton Mode and Polaritonic Band Gap in Few-Layer WS
    Liu W; Wang Y; Zheng B; Hwang M; Ji Z; Liu G; Li Z; Sorger VJ; Pan A; Agarwal R
    Nano Lett; 2020 Jan; 20(1):790-798. PubMed ID: 31846342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear Strong Coupling by Second-Harmonic Generation Enhancement in Plasmonic Nanopatch Antennas.
    Krause B; Mishra D; Chen J; Argyropoulos C; Hoang T
    Adv Opt Mater; 2022 Aug; 10(16):. PubMed ID: 36275124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards polariton blockade of confined exciton-polaritons.
    Delteil A; Fink T; Schade A; Höfling S; Schneider C; İmamoğlu A
    Nat Mater; 2019 Mar; 18(3):219-222. PubMed ID: 30783230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of quantum emitter-plasmon strong coupling and energy transport with external electrostatic fields.
    Gettapola K; Hapuarachchi H; Stockman MI; Premaratne M
    J Phys Condens Matter; 2020 Mar; 32(12):125301. PubMed ID: 31770745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear plasmon-exciton coupling enhances sum-frequency generation from a hybrid metal/semiconductor nanostructure.
    Zhong JH; Vogelsang J; Yi JM; Wang D; Wittenbecher L; Mikaelsson S; Korte A; Chimeh A; Arnold CL; Schaaf P; Runge E; Huillier AL; Mikkelsen A; Lienau C
    Nat Commun; 2020 Mar; 11(1):1464. PubMed ID: 32193407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deterministic Quantum Emitter Formation in Hexagonal Boron Nitride via Controlled Edge Creation.
    Ziegler J; Klaiss R; Blaikie A; Miller D; Horowitz VR; Alemán BJ
    Nano Lett; 2019 Mar; 19(3):2121-2127. PubMed ID: 30768282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Room-Temperature Polariton Lasing from CdSe Core-Only Nanoplatelets.
    Freire-Fernández F; Sinai NG; Hui Tan MJ; Park SM; Koessler ER; Krauss T; Huo P; Odom TW
    ACS Nano; 2024 Jun; 18(23):15177-15184. PubMed ID: 38808728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.