These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 36693292)

  • 1. MEDUSA©: A novel Python-based software ecosystem to accelerate brain-computer interface and cognitive neuroscience research.
    Santamaría-Vázquez E; Martínez-Cagigal V; Marcos-Martínez D; Rodríguez-González V; Pérez-Velasco S; Moreno-Calderón S; Hornero R
    Comput Methods Programs Biomed; 2023 Mar; 230():107357. PubMed ID: 36693292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NeuroPycon: An open-source python toolbox for fast multi-modal and reproducible brain connectivity pipelines.
    Meunier D; Pascarella A; Altukhov D; Jas M; Combrisson E; Lajnef T; Bertrand-Dubois D; Hadid V; Alamian G; Alves J; Barlaam F; Saive AL; Dehgan A; Jerbi K
    Neuroimage; 2020 Oct; 219():117020. PubMed ID: 32522662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wyrm: A Brain-Computer Interface Toolbox in Python.
    Venthur B; Dähne S; Höhne J; Heller H; Blankertz B
    Neuroinformatics; 2015 Oct; 13(4):471-86. PubMed ID: 26001643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BCILAB: a platform for brain-computer interface development.
    Kothe CA; Makeig S
    J Neural Eng; 2013 Oct; 10(5):056014. PubMed ID: 23985960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BioPyC, an Open-Source Python Toolbox for Offline Electroencephalographic and Physiological Signals Classification.
    Appriou A; Pillette L; Trocellier D; Dutartre D; Cichocki A; Lotte F
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gumpy: a Python toolbox suitable for hybrid brain-computer interfaces.
    Tayeb Z; Waniek N; Fedjaev J; Ghaboosi N; Rychly L; Widderich C; Richter C; Braun J; Saveriano M; Cheng G; Conradt J
    J Neural Eng; 2018 Dec; 15(6):065003. PubMed ID: 30215610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mushu, a free- and open source BCI signal acquisition, written in Python.
    Venthur B; Blankertz B
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1786-8. PubMed ID: 23366257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MOABB: trustworthy algorithm benchmarking for BCIs.
    Jayaram V; Barachant A
    J Neural Eng; 2018 Dec; 15(6):066011. PubMed ID: 30177583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creamino: A Cost-Effective, Open-Source EEG-Based BCI System.
    Chiesi M; Guermandi M; Placati S; Scarselli EF; Guerrieri R
    IEEE Trans Biomed Eng; 2019 Apr; 66(4):900-909. PubMed ID: 30080140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Unlock Project: a Python-based framework for practical brain-computer interface communication "app" development.
    Brumberg JS; Lorenz SD; Galbraith BV; Guenther FH
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2505-8. PubMed ID: 23366434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design-development of an at-home modular brain-computer interface (BCI) platform in a case study of cervical spinal cord injury.
    Davis KC; Meschede-Krasa B; Cajigas I; Prins NW; Alver C; Gallo S; Bhatia S; Abel JH; Naeem JA; Fisher L; Raza F; Rifai WR; Morrison M; Ivan ME; Brown EN; Jagid JR; Prasad A
    J Neuroeng Rehabil; 2022 Jun; 19(1):53. PubMed ID: 35659259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Medusa: a scalable MR console using USB.
    Stang PP; Conolly SM; Santos JM; Pauly JM; Scott GC
    IEEE Trans Med Imaging; 2012 Feb; 31(2):370-9. PubMed ID: 21954200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An embedded implementation based on adaptive filter bank for brain-computer interface systems.
    Belwafi K; Romain O; Gannouni S; Ghaffari F; Djemal R; Ouni B
    J Neurosci Methods; 2018 Jul; 305():1-16. PubMed ID: 29738806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Neurodata Without Borders ecosystem for neurophysiological data science.
    Rübel O; Tritt A; Ly R; Dichter BK; Ghosh S; Niu L; Baker P; Soltesz I; Ng L; Svoboda K; Frank L; Bouchard KE
    Elife; 2022 Oct; 11():. PubMed ID: 36193886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MEDUSA: Prediction of Protein Flexibility from Sequence.
    Vander Meersche Y; Cretin G; de Brevern AG; Gelly JC; Galochkina T
    J Mol Biol; 2021 May; 433(11):166882. PubMed ID: 33972018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive BCI based on software agents.
    Castillo-Garcia J; Cotrina A; Benevides A; Delisle-Rodriguez D; Longo B; Caicedo E; Ferreira A; Bastos T
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5458-61. PubMed ID: 25571229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain-Computer Interface: Advancement and Challenges.
    Mridha MF; Das SC; Kabir MM; Lima AA; Islam MR; Watanobe Y
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Fuzzy Shell for Developing an Interpretable BCI Based on the Spatiotemporal Dynamics of the Evoked Oscillations.
    Lekova A; Chavdarov I
    Comput Intell Neurosci; 2021; 2021():6685672. PubMed ID: 33936191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.