These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36693293)

  • 21. Band broadening in size-exclusion chromatography of polydisperse samples.
    Popovici ST; Kok WT; Schoenmakers PJ
    J Chromatogr A; 2004 Dec; 1060(1-2):237-52. PubMed ID: 15628166
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sizing and separation of liposomes, biological vesicles, and viruses by high-performance liquid chromatography.
    Ollivon M; Walter A; Blumenthal R
    Anal Biochem; 1986 Feb; 152(2):262-74. PubMed ID: 3963363
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chromatographic mode transition from size exclusion to slalom chromatography as observed for chitosan.
    Kang Y; Ji X; Bo S; Liu Y; Pasch H
    Carbohydr Polym; 2020 May; 235():115950. PubMed ID: 32122486
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Facts and myths about columns packed with sub-3 microm and sub-2 microm particles.
    Fekete S; Ganzler K; Fekete J
    J Pharm Biomed Anal; 2010 Jan; 51(1):56-64. PubMed ID: 19726154
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of new types of stationary phases for fast liquid chromatographic applications.
    Fekete S; Fekete J; Ganzler K
    J Pharm Biomed Anal; 2009 Dec; 50(5):703-9. PubMed ID: 19560301
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fast liquid chromatography: the domination of core-shell and very fine particles.
    Fekete S; Oláh E; Fekete J
    J Chromatogr A; 2012 Mar; 1228():57-71. PubMed ID: 21982449
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Size exclusion chromatography with superficially porous particles.
    Schure MR; Moran RE
    J Chromatogr A; 2017 Jan; 1480():11-19. PubMed ID: 28007299
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Size-exclusion chromatography using reverse-phase columns for protein separation.
    Huang TY; Chi LM; Chien KY
    J Chromatogr A; 2018 Oct; 1571():201-212. PubMed ID: 30146374
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unraveling the mysteries of modern size exclusion chromatography - the way to achieve confident characterization of therapeutic proteins.
    Goyon A; Fekete S; Beck A; Veuthey JL; Guillarme D
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Aug; 1092():368-378. PubMed ID: 29936373
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enantioselective ultra-high and high performance liquid chromatography: a comparative study of columns based on the Whelk-O1 selector.
    Kotoni D; Ciogli A; D'Acquarica I; Kocergin J; Szczerba T; Ritchie H; Villani C; Gasparrini F
    J Chromatogr A; 2012 Dec; 1269():226-41. PubMed ID: 23040980
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrahigh-pressure liquid chromatography using a 1-mm id column packed with 1.5-microm porous particles.
    Anspach JA; Maloney TD; Colón LA
    J Sep Sci; 2007 May; 30(8):1207-13. PubMed ID: 17595956
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of size exclusion chromatography columns packed with sub-3μm particles for the analysis of biopharmaceutical proteins.
    Goyon A; Beck A; Colas O; Sandra K; Guillarme D; Fekete S
    J Chromatogr A; 2017 May; 1498():80-89. PubMed ID: 27914608
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of superficially porous particle based zwitterionic chiral ion exchangers against fully porous particle benchmarks for enantioselective ultra-high performance liquid chromatography.
    Geibel C; Dittrich K; Woiwode U; Kohout M; Zhang T; Lindner W; Lämmerhofer M
    J Chromatogr A; 2019 Oct; 1603():130-140. PubMed ID: 31235330
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Systematic evaluation of commercially available ultra-high performance liquid chromatography columns for drug metabolite profiling: optimization of chromatographic peak capacity.
    Dubbelman AC; Cuyckens F; Dillen L; Gross G; Hankemeier T; Vreeken RJ
    J Chromatogr A; 2014 Dec; 1374():122-133. PubMed ID: 25435462
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Morphology-transport relationships in liquid chromatography: Application to method development in size exclusion chromatography.
    Gritti F; Hochstrasser J; Svidrytski A; Hlushkou D; Tallarek U
    J Chromatogr A; 2020 Jun; 1620():460991. PubMed ID: 32115234
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Practical comparison of LC columns packed with different superficially porous particles for the separation of small molecules and medium size natural products.
    Yang P; McCabe T; Pursch M
    J Sep Sci; 2011 Nov; 34(21):2975-82. PubMed ID: 21936054
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modifying conventional high-performance liquid chromatography systems to achieve fast separations with Fused-Core columns: a case study.
    Alexander AJ; Waeghe TJ; Himes KW; Tomasella FP; Hooker TF
    J Chromatogr A; 2011 Aug; 1218(32):5456-69. PubMed ID: 21742337
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A protocol for designing comprehensive two-dimensional liquid chromatography separation systems.
    Schoenmakers PJ; Vivó-Truyols G; Decrop WM
    J Chromatogr A; 2006 Jul; 1120(1-2):282-90. PubMed ID: 16376907
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High resolution separation of recombinant monoclonal antibodies by size-exclusion ultra-high performance liquid chromatography (SE-UHPLC).
    Yang R; Tang Y; Zhang B; Lu X; Liu A; Zhang YT
    J Pharm Biomed Anal; 2015 May; 109():52-61. PubMed ID: 25766848
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Size exclusion-high-performance liquid chromatography (SEC-HPLC).
    Schrag D; Corbier M; Raimondi S
    Methods Mol Biol; 2014; 1131():507-12. PubMed ID: 24515486
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.