These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 36693632)

  • 1. Imaging-Based In Situ Analysis of 5-Methylcytosine at Low Repetitive Single Gene Loci with Transcription-Activator-Like Effector Probes.
    Jung A; Munõz-López Á; Buchmuller BC; Banerjee S; Summerer D
    ACS Chem Biol; 2023 Feb; 18(2):230-236. PubMed ID: 36693632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineered TALE Repeats for Enhanced Imaging-Based Analysis of Cellular 5-Methylcytosine.
    Muñoz-López Á; Jung A; Buchmuller B; Wolffgramm J; Maurer S; Witte A; Summerer D
    Chembiochem; 2021 Feb; 22(4):645-651. PubMed ID: 32991020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deciphering TAL effectors for 5-methylcytosine and 5-hydroxymethylcytosine recognition.
    Zhang Y; Liu L; Guo S; Song J; Zhu C; Yue Z; Wei W; Yi C
    Nat Commun; 2017 Oct; 8(1):901. PubMed ID: 29026078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and Application of DNA Modification-Specific Transcription-Activator-Like Effectors.
    Buchmuller B; Muñoz-López Á; Gieß M; Summerer D
    Methods Mol Biol; 2021; 2198():381-399. PubMed ID: 32822046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering DNA Backbone Interactions Results in TALE Scaffolds with Enhanced 5-Methylcytosine Selectivity.
    Rathi P; Witte A; Summerer D
    Sci Rep; 2017 Nov; 7(1):15067. PubMed ID: 29118409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complete, Programmable Decoding of Oxidized 5-Methylcytosine Nucleobases in DNA by Chemoselective Blockage of Universal Transcription-Activator-Like Effector Repeats.
    Gieß M; Witte A; Jasper J; Koch O; Summerer D
    J Am Chem Soc; 2018 May; 140(18):5904-5908. PubMed ID: 29677450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective recognition of
    Rathi P; Maurer S; Summerer D
    Philos Trans R Soc Lond B Biol Sci; 2018 Jun; 373(1748):. PubMed ID: 29685980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Achieving single-nucleotide resolution of 5-methylcytosine detection with TALEs.
    Kubik G; Summerer D
    Chembiochem; 2015 Jan; 16(2):228-31. PubMed ID: 25522353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Insights into the Specific Recognition of 5-methylcytosine and 5-hydroxymethylcytosine by TAL Effectors.
    Liu L; Zhang Y; Liu M; Wei W; Yi C; Peng J
    J Mol Biol; 2020 Feb; 432(4):1035-1047. PubMed ID: 31863750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designer Receptors for Nucleotide-Resolution Analysis of Genomic 5-Methylcytosine by Cellular Imaging.
    Muñoz-López Á; Buchmuller B; Wolffgramm J; Jung A; Hussong M; Kanne J; Schweiger MR; Summerer D
    Angew Chem Int Ed Engl; 2020 Jun; 59(23):8927-8931. PubMed ID: 32167219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of Transcription Activator-Like Effectors in Xanthomonas oryzae.
    Erkes A; Reschke M; Boch J; Grau J
    Genome Biol Evol; 2017 Jun; 9(6):1599-1615. PubMed ID: 28637323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TALEored Epigenetics: A DNA-Binding Scaffold for Programmable Epigenome Editing and Analysis.
    Kubik G; Summerer D
    Chembiochem; 2016 Jun; 17(11):975-80. PubMed ID: 26972580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Programmable and highly resolved in vitro detection of 5-methylcytosine by TALEs.
    Kubik G; Schmidt MJ; Penner JE; Summerer D
    Angew Chem Int Ed Engl; 2014 Jun; 53(23):6002-6. PubMed ID: 24801054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chimerization Enables Gene Synthesis and Lentiviral Delivery of Customizable TALE-Based Effectors.
    Fang Y; Stroukov W; Cathomen T; Mussolino C
    Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 31991825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. STAR: A Simple TAL Effector Assembly Reaction Using Isothermal Assembly.
    Gogolok S; Köber U; Pollard SM
    Methods Mol Biol; 2018; 1772():477-490. PubMed ID: 29754248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simple and Rapid Assembly of TALE Modules Based on the Degeneracy of the Codons and Trimer Repeats.
    Cheng L; Zhou X; Zheng Y; Tang C; Liu Y; Zheng S; Liu Y; Zhou J; Li C; Chen M; Lai L; Zou Q
    Genes (Basel); 2021 Nov; 12(11):. PubMed ID: 34828367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FusX: A Rapid One-Step Transcription Activator-Like Effector Assembly System for Genome Science.
    Ma AC; McNulty MS; Poshusta TL; Campbell JM; Martínez-Gálvez G; Argue DP; Lee HB; Urban MD; Bullard CE; Blackburn PR; Man TK; Clark KJ; Ekker SC
    Hum Gene Ther; 2016 Jun; 27(6):451-63. PubMed ID: 26854857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualization of specific repetitive genomic sequences with fluorescent TALEs in Arabidopsis thaliana.
    Fujimoto S; Sugano SS; Kuwata K; Osakabe K; Matsunaga S
    J Exp Bot; 2016 Nov; 67(21):6101-6110. PubMed ID: 27811079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design, Construction, and Application of Transcription Activation-Like Effectors.
    Deng P; Carter S; Fink K
    Methods Mol Biol; 2019; 1937():47-58. PubMed ID: 30706389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a Transcriptional Activator-Like Effector Protein to Accurately Discriminate Single Nucleotide Difference.
    Sakono M; Oya T; Aoki M
    Chembiochem; 2023 Feb; 24(3):e202200486. PubMed ID: 36409599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.