These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 36693937)
1. Electrotaxis behavior of droplets composed of aqueous Belousov-Zhabotinsky solutions suspended in oil phase. Back O; Asally M; Wang Z; Hayashi Y Sci Rep; 2023 Jan; 13(1):1340. PubMed ID: 36693937 [TBL] [Abstract][Full Text] [Related]
2. Towards Functional Droplet Architectures: a Belousov-Zhabotinsky Medium for Networks. Chang KM; de Planque MRR; Zauner KP Sci Rep; 2018 Aug; 8(1):12656. PubMed ID: 30140015 [TBL] [Abstract][Full Text] [Related]
3. Oscillation of Speed of a Self-Propelled Belousov-Zhabotinsky Droplet. Suematsu NJ; Mori Y; Amemiya T; Nakata S J Phys Chem Lett; 2016 Sep; 7(17):3424-8. PubMed ID: 27532330 [TBL] [Abstract][Full Text] [Related]
4. Hydrodynamics of a confined active Belousov-Zhabotinsky droplet. Chaithanya KVS; Shenoy SA; Dayal P Phys Rev E; 2022 Dec; 106(6-2):065103. PubMed ID: 36671180 [TBL] [Abstract][Full Text] [Related]
5. Configurable NOR gate arrays from Belousov-Zhabotinsky micro-droplets. Wang AL; Gold JM; Tompkins N; Heymann M; Harrington KI; Fraden S Eur Phys J Spec Top; 2016 Feb; 225(1):211-227. PubMed ID: 27168916 [TBL] [Abstract][Full Text] [Related]
6. Charge-Powered Electrotaxis for Versatile Droplet Manipulation. Jin Y; Liu X; Xu W; Sun P; Huang S; Yang S; Yang X; Wang Q; Lam RHW; Li R; Wang Z ACS Nano; 2023 Jun; 17(11):10713-10720. PubMed ID: 37219078 [TBL] [Abstract][Full Text] [Related]
7. Photochemical motion control of surface active Belousov-Zhabotinsky droplets. Jamaluddin SJS; Khaothong K; Tinsley MR; Showalter K Chaos; 2020 Aug; 30(8):083143. PubMed ID: 32872820 [TBL] [Abstract][Full Text] [Related]
9. Unraveling Partial Coalescence Between Droplet and Oil-Water Interface in Water-in-Oil Emulsions under a Direct-Current Electric Field via Molecular Dynamics Simulation. Li N; Pang Y; Sun Z; Sun X; Li W; Sun Y; Zhu L; Li B; Wang Z; Zeng H Langmuir; 2024 Mar; 40(11):5992-6003. PubMed ID: 38445586 [TBL] [Abstract][Full Text] [Related]
10. Theory and experiments of spiral unpinning in the Belousov-Zhabotinsky reaction using a circularly polarized electric field. Amrutha SV; Sebastian A; Sibeesh P; Punacha S; Shajahan TK Chaos; 2023 Jun; 33(6):. PubMed ID: 37368041 [TBL] [Abstract][Full Text] [Related]
11. Combined excitatory and inhibitory coupling in a 1-D array of Belousov-Zhabotinsky droplets. Li N; Delgado J; González-Ochoa HO; Epstein IR; Fraden S Phys Chem Chem Phys; 2014 Jun; 16(22):10965-78. PubMed ID: 24770658 [TBL] [Abstract][Full Text] [Related]
12. Coalescence, Partial Coalescence, and Noncoalescence of Two Free Droplets Suspended in Low-Viscosity Oil under a DC Electric Field. Huang X; He L; Luo X; Xu K; Lü Y; Yang D J Phys Chem B; 2020 Aug; 124(34):7508-7517. PubMed ID: 32790395 [TBL] [Abstract][Full Text] [Related]
13. Chemical communication and dynamics of droplet emulsions in networks of Belousov-Zhabotinsky micro-oscillators produced by microfluidics. Torbensen K; Rossi F; Ristori S; Abou-Hassan A Lab Chip; 2017 Mar; 17(7):1179-1189. PubMed ID: 28239705 [TBL] [Abstract][Full Text] [Related]
14. Fast-Moving Self-Propelled Droplets of a Nanocatalyzed Belousov-Zhabotinsky Reaction. Kumar DJP; Borkar C; Dayal P Langmuir; 2021 Nov; 37(43):12586-12595. PubMed ID: 34670083 [TBL] [Abstract][Full Text] [Related]
15. Breakup characteristics of aqueous droplet with surfactant in oil under direct current electric field. Luo X; Yan H; Huang X; Yang D; Wang J; He L J Colloid Interface Sci; 2017 Nov; 505():460-466. PubMed ID: 28633117 [TBL] [Abstract][Full Text] [Related]
16. Redistribution of mobile surface charges of an oil droplet in water in applied electric field. Li M; Li D Adv Colloid Interface Sci; 2016 Oct; 236():142-51. PubMed ID: 27545649 [TBL] [Abstract][Full Text] [Related]
17. Spontaneous Mode Switching of Self-Propelled Droplet Motion Induced by a Clock Reaction in the Belousov-Zhabotinsky Medium. Suematsu NJ; Mori Y; Amemiya T; Nakata S J Phys Chem Lett; 2021 Aug; 12(31):7526-7530. PubMed ID: 34346682 [TBL] [Abstract][Full Text] [Related]
18. Interfacial Dynamics in the Spontaneous Motion of an Aqueous Droplet. Suematsu NJ; Saikusa K; Nagata T; Izumi S Langmuir; 2019 Sep; 35(35):11601-11607. PubMed ID: 31397577 [TBL] [Abstract][Full Text] [Related]
19. Pumping of electrolyte with mobile liquid metal droplets driven by continuous electrowetting: A full-scaled simulation study considering surface-coupled electrocapillary two-phase flow. Liu W; Tao Y; Ge Z; Zhou J; Xu R; Ren Y Electrophoresis; 2021 Apr; 42(7-8):950-966. PubMed ID: 33119900 [TBL] [Abstract][Full Text] [Related]
20. Microfluidic generation of aqueous two-phase-system (ATPS) droplets by oil-droplet choppers. Zhou C; Zhu P; Tian Y; Tang X; Shi R; Wang L Lab Chip; 2017 Sep; 17(19):3310-3317. PubMed ID: 28861566 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]