These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 36694155)
1. Production of rhamnolipid biosurfactants in solid-state fermentation: process optimization and characterization studies. Dabaghi S; Ataei SA; Taheri A BMC Biotechnol; 2023 Jan; 23(1):2. PubMed ID: 36694155 [TBL] [Abstract][Full Text] [Related]
2. Microbial conversion of agro-processing waste (peanut meal) to rhamnolipid by Pseudomonas aeruginosa: solid-state fermentation, water extraction, medium optimization and potential applications. Zhao F; Zheng M; Xu X Bioresour Technol; 2023 Feb; 369():128426. PubMed ID: 36462764 [TBL] [Abstract][Full Text] [Related]
3. Designer rhamnolipids by reduction of congener diversity: production and characterization. Tiso T; Zauter R; Tulke H; Leuchtle B; Li WJ; Behrens B; Wittgens A; Rosenau F; Hayen H; Blank LM Microb Cell Fact; 2017 Dec; 16(1):225. PubMed ID: 29241456 [TBL] [Abstract][Full Text] [Related]
4. Biosurfactant production from novel air isolate NITT6L: screening, characterization and optimization of media. Vanavil B; Perumalsamy M; Rao AS J Microbiol Biotechnol; 2013 Sep; 23(9):1229-43. PubMed ID: 23851275 [TBL] [Abstract][Full Text] [Related]
5. Optimization and characterization of rhamnolipids produced by Pseudomonas aeruginosa ATCC 9027 using molasses as a substrate. Braz LM; Salazar-Bryam AM; Andrade GSS; Tambourgi EB World J Microbiol Biotechnol; 2022 Dec; 39(2):51. PubMed ID: 36544076 [TBL] [Abstract][Full Text] [Related]
6. Production and characterization of rhamnolipids produced by Serratia rubidaea SNAU02 under solid-state fermentation and its application as biocontrol agent. Nalini S; Parthasarathi R Bioresour Technol; 2014 Dec; 173():231-238. PubMed ID: 25305653 [TBL] [Abstract][Full Text] [Related]
7. Biosynthesis of rhamnolipid by a Marinobacter species expands the paradigm of biosurfactant synthesis to a new genus of the marine microflora. Tripathi L; Twigg MS; Zompra A; Salek K; Irorere VU; Gutierrez T; Spyroulias GA; Marchant R; Banat IM Microb Cell Fact; 2019 Oct; 18(1):164. PubMed ID: 31597569 [TBL] [Abstract][Full Text] [Related]
8. Soy molasses as a fermentation substrate for the production of biosurfactant using Pseudomonas aeruginosa ATCC 10145. Rodrigues MS; Moreira FS; Cardoso VL; de Resende MM Environ Sci Pollut Res Int; 2017 Aug; 24(22):18699-18709. PubMed ID: 28702915 [TBL] [Abstract][Full Text] [Related]
9. Characterization of a New Rhamnolipid Biosurfactant Complex from Shreve GS; Makula R Biomolecules; 2019 Dec; 9(12):. PubMed ID: 31861084 [TBL] [Abstract][Full Text] [Related]
10. Two schemes for production of biosurfactant from Pseudomonas aeruginosa MR01: Applying residues from soybean oil industry and silica sol-gel immobilized cells. Bagheri Lotfabad T; Ebadipour N; Roostaazad R; Partovi M; Bahmaei M Colloids Surf B Biointerfaces; 2017 Apr; 152():159-168. PubMed ID: 28110037 [TBL] [Abstract][Full Text] [Related]
11. Stimulatory effects of biosurfactant produced by Pseudomonas aeruginosa BSZ-07 on rice straw decomposing. Zhang Q; Cai W; Wang J J Environ Sci (China); 2008; 20(8):975-80. PubMed ID: 18817078 [TBL] [Abstract][Full Text] [Related]
12. Valorization of waste engine oil to mono- and di-rhamnolipid in a sustainable approach to circular bioeconomy. Gaur S; Jujaru M; Vennu R; Gupta S; Jain A Biodegradation; 2024 Aug; 35(5):803-818. PubMed ID: 38662141 [TBL] [Abstract][Full Text] [Related]
13. Cost-effective rhamnolipid production by Burkholderia thailandensis E264 using agro-industrial residues. Correia J; Gudiña EJ; Lazar Z; Janek T; Teixeira JA Appl Microbiol Biotechnol; 2022 Nov; 106(22):7477-7489. PubMed ID: 36222896 [TBL] [Abstract][Full Text] [Related]
14. Production and characterization of rhamnolipid using palm oil agricultural refinery waste. Radzuan MN; Banat IM; Winterburn J Bioresour Technol; 2017 Feb; 225():99-105. PubMed ID: 27888734 [TBL] [Abstract][Full Text] [Related]
15. Performance evaluation of rhamnolipid biosurfactant produced by Pseudomonas aeruginosa and its effect on marine oil-spill remediation. Zhu M; Zhang H; Cui W; Su Y; Sun S; Zhao C; Liu Q Arch Microbiol; 2024 Mar; 206(4):183. PubMed ID: 38502272 [TBL] [Abstract][Full Text] [Related]
16. Production of biosurfactant from a new and promising strain of Pseudomonas aeruginosa PA1. Santa Anna LM; Sebastian GV; Pereira N; Alves TL; Menezes EP; Freire DM Appl Biochem Biotechnol; 2001; 91-93():459-67. PubMed ID: 11963874 [TBL] [Abstract][Full Text] [Related]
17. Optimization and scale-up of the production of rhamnolipid by Pseudomonas aeruginosa in solid-state fermentation using high-density polyurethane foam as an inert support. Gong Z; He Q; Che C; Liu J; Yang G Bioprocess Biosyst Eng; 2020 Mar; 43(3):385-392. PubMed ID: 31724063 [TBL] [Abstract][Full Text] [Related]
18. Optimization of environmental factors for improved production of rhamnolipid biosurfactant by Pseudomonas aeruginosa RS29 on glycerol. Saikia RR; Deka S; Deka M; Sarma H J Basic Microbiol; 2012 Aug; 52(4):446-57. PubMed ID: 22144225 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of rhamnolipid production by a halotolerant novel strain of Pseudomonas aeruginosa. Varjani S; Upasani VN Bioresour Technol; 2019 Sep; 288():121577. PubMed ID: 31174086 [TBL] [Abstract][Full Text] [Related]
20. Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D. George S; Jayachandran K J Appl Microbiol; 2013 Feb; 114(2):373-83. PubMed ID: 23164038 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]